Modern Physics/Print version


Modern Physics

The current, editable version of this book is available in Wikibooks, the open-content textbooks collection, at
https://en.wikibooks.org/wiki/Modern_Physics

Permission is granted to copy, distribute, and/or modify this document under the terms of the Creative Commons Attribution-ShareAlike 3.0 License.

Introduction


Welcome

edit

Welcome to Modern Physics. This book has a lot of information, but it also needs a lot of work. Feel free to read all the material that we have, and edit the material that needs editing. If you want to do a lot of work on this book, it is recommended that you read the note for contributors.

Who This Book is For

edit

This book is for an introductory undergraduate study of calculus-based physics. The material covered in this book frequently is spread out over two or three semesters in an average undergraduate curriculum, if not more. This book will rely heavily on Calculus, including differential and integral calculus, multivariable calculus, and differential equations. Also, some topics of Linear Algebra will be considered and utilized. Students without the necessary background in mathematics will have a difficult time reading and following the material.

What This Book Will Cover

edit

This book will cover the topic of waves first, because they are a predominant part of modern physical theory. Next, this book will cover the basics of motion. Next, the theory of Special Relativity and Quantum Mechanics are introduced. In the later sections, we cover a number of disjointed topics, including Gravity, Electromagnetism, Fluid dynamics, Thermodynamics, and Nuclear Physics. Additional topics may be added later, as needed. Many of the sections in this book are incomplete, and many pages are stubs. Readers are encouraged to help expand sections that need help.

Where To Go From Here

edit

At the present time, there are no materials on Wikibooks that cover material that is more advanced than this. More material on future subjects may be added, however.


For Contributors


This page is going to be a brief introduction to editing this book, as well as a general style guide for new contributors.

A Radically Modern Approach to Introductory Physics

edit

This book was published under the GFDL, and is a good resource. Since it is under the GFDL, material can be harvested from it, and adapted for this wikibook:

This textbook aims to cover every aspect of modern physics at an undergraduate level in such a manner that anyone who is literate, and not frightened of math, should be able to understand and use it. It can be used to add new material to the Modern Physics book.

edit

The following template was created for this book, to provide a standardized navigational system.

Sections can also be altered to have their own navigational templates, as needed.

Stubs

edit

Some pages are stubs, and new pages may become stubs. To ensure that stubs are found and expanded, they should be marked. To mark a stub, you should use the following template:

This will put a little notice in the section that it is a stub, and will add the page to the following category:

All current stub pages are listed in that category, and new users should become familiar with it.

Category

edit

All pages and templates in this book should belong to the following category:

The navigation templates automatically add a page to this category, so any page that doesn't have an appropriate navigation template won't be included in this category. Templates can be added to this category manually.

Contributors

edit

Contributors can list themselves on the Modern Physics main talk page, or they can list themselves on this talk page. Contributors should not list their names on any module pages, nor should they sign their contributions on the module pages. Such signatures or name lists will be deleted.


Page List


This is a page listing for the Modern Physics book. Entries in italics are redirects and can probably be deleted.

Page Listing For: Modern Physics




Annus Mirabilis of Albert Einstein

The term "Annus Mirabilis" is Latin for "Miracle Year," and it refers to the year 1905 when Albert Einstein, a relatively unknown physicist at the time, published four groundbreaking papers in the field of theoretical physics. These papers had a profound and lasting impact on our understanding of the fundamental laws of the universe and marked a turning point in the history of science. Here are the four papers that make up Einstein's Annus Mirabilis:

  • Special Theory of Relativity: In this paper, titled "On the Electrodynamics of Moving Bodies," Einstein introduced his special theory of relativity. He presented the theory's two key postulates: the principle of relativity (physical laws are the same for observers in non-accelerated motion) and the constancy of the speed of light in a vacuum for all observers. From these postulates, he derived the famous equation E=mc², which relates energy (E) to mass (m) and the speed of light (c). Special relativity revolutionized our understanding of space, time, and energy.
  • Photoelectric Effect: In the paper "On a Heuristic Point of View Concerning the Production and Transformation of Light," Einstein explained the photoelectric effect, in which light shining on a material causes it to emit electrons. He proposed that light consists of discrete packets of energy called photons, and the energy of each photon is proportional to its frequency. This paper provided strong evidence for the quantum nature of light, which was a departure from classical wave theory.
  • Brownian Motion: Einstein's paper "On the Movement of Small Particles Suspended in a Stationary Liquid as Required by the Molecular Kinetic Theory of Heat" addressed the random motion of small particles suspended in a liquid, known as Brownian motion. He showed that the motion could be explained by the kinetic theory of gases and provided experimental predictions that could be tested. This work provided further evidence for the existence of atoms and molecules.
  • Mass-Energy Equivalence: In a short paper titled "Does the Inertia of a Body Depend upon its Energy Content?" Einstein explored the concept of mass-energy equivalence, which was later expressed in the famous equation E=mc². He proposed that the mass of an object is equivalent to its energy content, suggesting that mass can be converted into energy and vice versa. This concept laid the foundation for nuclear physics and the understanding of nuclear reactions.

Einstein's papers from 1905 were published in the journal "Annalen der Physik" (Annals of Physics) and had a profound impact on the scientific community. They fundamentally reshaped our understanding of the physical world and paved the way for later developments in modern physics, including the theory of general relativity and quantum mechanics. Einstein's work during his Annus Mirabilis marked him as one of the most influential physicists of the 20th century and earned him the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.

Special Theory of Relativity

edit

The Special Theory of Relativity, often simply referred to as the Theory of Relativity, is a fundamental theory in physics developed by Albert Einstein in 1905. This groundbreaking theory transformed our understanding of space, time, and the relationship between matter and energy. It consists of two main postulates and has had a profound impact on many areas of science and technology. Here are the key principles and implications of the Special Theory of Relativity:

  • Postulate 1 - The Principle of Relativity:
    • The laws of physics are the same for all observers, regardless of their motion.
    • This principle implies that there is no "absolute" state of rest or motion in the universe. The laws of physics remain consistent for observers in both uniform motion and at rest.
  • Postulate 2 - The Speed of Light:
    • The speed of light in a vacuum, denoted as "c," is the same for all observers, regardless of their relative motion.
    • This postulate implies that the speed of light is a universal constant, approximately equal to 299,792,458 meters per second (or about 186,282 miles per second).

Key Implications and Concepts of the Special Theory of Relativity:

  • Time Dilation:
    • According to the theory, time is relative and depends on the observer's motion. An observer in motion relative to another will perceive time passing more slowly. This effect is known as time dilation.
    • The famous equation associated with time dilation is:
           
    • Time dilation has been experimentally confirmed in particle accelerators and other high-speed experiments.
  • Length Contraction:
    • Objects in motion appear to contract along their direction of motion from the perspective of a stationary observer. This phenomenon is known as length contraction.
    • The equation for length contraction is:  
  • Relativistic Mass:
    • As an object's velocity approaches the speed of light, its relativistic mass increases according to the equation:  , where   is the relativistic mass,   is the rest mass,   is the velocity, and   is the speed of light.
    • This concept highlights that as an object accelerates, it becomes more massive and requires more energy to continue accelerating.
  • E=mc² - Mass-Energy Equivalence:
    • Einstein's famous equation,  , states that mass and energy are interchangeable. It means that mass can be converted into energy and vice versa.
    • This principle underlies nuclear reactions, such as those occurring in the sun, nuclear power plants, and atomic bombs.
  • Relativity of Simultaneity:
    • In special relativity, events that are simultaneous in one frame of reference may not be simultaneous in another frame of reference moving at a relative velocity.
    • This leads to the conclusion that there is no universal "now" across all frames of reference.
  • Lorentz Transformation:
    • The Lorentz transformation equations are mathematical formulas that relate space and time coordinates between two relatively moving observers. They describe how measurements of length, time, and other quantities differ between inertial frames.
  • Causality and the Speed of Light Limit:
    • The theory upholds causality, meaning that cause and effect relationships cannot be violated. No information, matter, or influence can travel faster than the speed of light.

The Special Theory of Relativity has been rigorously tested and confirmed through numerous experiments and observations. It has far-reaching implications for our understanding of the physical universe and has played a pivotal role in the development of modern physics, including the theory of general relativity, which extends these principles to include gravitation. Special relativity has also influenced technology, particularly in the design of high-speed particle accelerators and the development of the Global Positioning System (GPS).

Photoelectric Effect

edit

The photoelectric effect is a phenomenon in physics where electrons are emitted from a material when it is exposed to electromagnetic radiation, typically in the form of visible or ultraviolet light. This effect was one of the key pieces of experimental evidence that contributed to the development of quantum mechanics and the understanding of the dual nature of light.

Here are the main features and principles of the photoelectric effect:

  • Emission of Electrons: When electromagnetic radiation, such as light, is incident on a material surface, it can cause the emission of electrons from that material. These emitted electrons are called photoelectrons.
  • Quantized Energy: The photoelectric effect provided experimental evidence for the quantization of energy, a fundamental concept in quantum mechanics. Electrons in a material are bound by discrete energy levels, and to be emitted, an electron must absorb a photon (a particle of light) with energy equal to or greater than the energy required to overcome the binding energy of the electron.
  • Threshold Frequency: There is a minimum frequency of incident light, called the threshold frequency ( ), below which no photoelectrons are emitted, regardless of the intensity (brightness) of the light. Photoelectron emission only occurs when the frequency of the incident light exceeds this threshold.
  • Einstein's Explanation: Albert Einstein provided a theoretical explanation of the photoelectric effect in 1905. He proposed that light is composed of discrete packets of energy called photons. When a photon is absorbed by an electron in the material, it imparts its energy to the electron, allowing it to overcome the binding energy and escape the material's surface as a photoelectron. The energy of a photon ( ) is directly proportional to its frequency ( ), as given by the equation  , where   is Planck's constant.
  • Intensity and Electron Kinetic Energy: Increasing the intensity of the incident light (the number of photons per unit time) results in more photoelectrons being emitted, but it does not affect their maximum kinetic energy. The maximum kinetic energy of the emitted photoelectrons depends only on the frequency of the incident light and is given by the equation  , where   is the work function, representing the minimum energy required to remove an electron from the material.
  • Wave-Particle Duality: The photoelectric effect is a clear example of the wave-particle duality of light. Although light is typically described as a wave, the photoelectric effect demonstrates its particle-like behavior, where photons of discrete energy interact with electrons in a quantized manner.

The photoelectric effect has practical applications in devices like photodetectors and photovoltaic cells (solar cells) and has been crucial in developing our understanding of quantum mechanics and the fundamental nature of light. It played a significant role in the development of the concept of quantization of energy and contributed to Albert Einstein receiving the Nobel Prize in Physics in 1921.

Brownian Motion

edit

Brownian motion, also known as Brownian movement or pedesis, is the random and continuous motion of microscopic particles suspended in a fluid (liquid or gas) resulting from their collision with fast-moving atoms or molecules in the surrounding medium. This phenomenon was first observed and explained by the Scottish scientist Robert Brown in 1827, although it wasn't fully understood until Albert Einstein provided a theoretical explanation in 1905, which helped establish the concept of atoms and molecules.

Key characteristics and principles of Brownian motion include:

  • Random Motion: Brownian motion is characterized by the erratic, zigzagging, and unpredictable paths taken by the particles. The motion appears to be chaotic because it results from the cumulative effect of countless collisions with much smaller, faster-moving particles (atoms or molecules) in the fluid.
  • Microscopic Scale: Brownian motion is most noticeable at microscopic scales, such as when observing tiny particles like pollen grains, dust, or colloidal particles suspended in a liquid. At macroscopic scales, the effects of Brownian motion are not typically observable.
  • Continuous Nature: Brownian motion is a continuous, ongoing process. It continues as long as the particles are suspended in the fluid and there are thermal fluctuations (random movements) of the surrounding molecules.
  • Thermal Motion: Brownian motion is driven by thermal energy. The fast, random motion of the surrounding fluid molecules is a manifestation of their thermal energy. When these fast-moving molecules collide with the suspended particles, they impart momentum, causing the particles to move randomly.
  • Einstein's Explanation: Albert Einstein's 1905 paper on the theory of Brownian motion provided a mathematical explanation for this phenomenon, which supported the idea that matter is composed of discrete atoms and molecules. Einstein's equations describe the mean square displacement of a Brownian particle over time.
  • Diffusion: Brownian motion is related to the process of diffusion, where particles tend to move from regions of higher concentration to regions of lower concentration. Diffusion is the net result of the random motion of particles due to Brownian motion.
  • Applications: Brownian motion has numerous practical applications and implications in various fields, including physics, chemistry, biology, and engineering. It is used to explain phenomena such as the diffusion of molecules in gases and liquids, the behavior of colloids, and the motion of small particles in biological systems.
  • Statistical Properties: Brownian motion is often analyzed statistically. The mean square displacement of a particle over time follows a linear relationship with time, and this relationship is used to determine diffusion coefficients and other properties of the suspended particles.
  • Brownian Motion Simulations: Computer simulations and models of Brownian motion have been developed to study the behavior of particles in complex systems. These simulations have applications in areas like materials science and drug delivery.

In summary, Brownian motion is a fundamental phenomenon that occurs at the microscopic scale and results from the continuous, random motion of particles suspended in a fluid. It has played a crucial role in our understanding of the kinetic theory of matter and the behavior of atoms and molecules in gases and liquids.

Mass-Energy Equivalence

edit

Mass-energy equivalence is a fundamental principle in physics that describes the relationship between mass and energy. This concept is most famously encapsulated by Albert Einstein's equation,  , which states that energy ( ) is equal to mass ( ) times the speed of light ( ) squared. Here are key points about mass-energy equivalence:

  • The Equation  :
    • The equation   is one of the most famous equations in physics, and it relates mass and energy. It asserts that a given amount of mass can be converted into a corresponding amount of energy and vice versa.
    •   represents energy in joules (J),   represents mass in kilograms (kg), and   represents the speed of light in a vacuum, approximately   meters per second (m/s).
  • Origin:
    • Albert Einstein proposed the mass-energy equivalence principle in his special theory of relativity, which was published in 1905. This theory revolutionized physics by demonstrating that mass and energy are interconnected.
  • Consequences:
    • The mass-energy equivalence principle has profound consequences. It implies that mass is a form of energy, and any mass can be converted into energy and released in various processes, such as nuclear reactions.
    • Conversely, energy can be converted into mass, as observed in particle accelerators where high-energy collisions can create new particles with mass.
  • Nuclear Reactions:
    • The most famous application of mass-energy equivalence is in nuclear reactions, such as those occurring in the sun and nuclear power plants. In these reactions, a small amount of mass is converted into a large amount of energy, as described by  .
    • The energy released in nuclear reactions is harnessed for electricity generation and other applications.
  • Atomic Bombs:
    • The destructive power of atomic bombs is a result of mass-energy equivalence. In nuclear explosions, a small amount of nuclear material undergoes a chain reaction, releasing a massive amount of energy as the mass is converted into energy.
  • Particle Physics:
    • Particle accelerators, like the Large Hadron Collider (LHC), accelerate particles to high speeds and collide them to study fundamental particles and their interactions. These experiments take advantage of mass-energy equivalence to create and study particles.
  • Cosmological Implications:
    • Mass-energy equivalence also has implications for cosmology and the study of the universe's early moments, particularly during the Big Bang. It helps explain how particles and radiation behaved in the early universe.
  • Practical Applications:
    • Mass-energy equivalence is applied in technologies like positron emission tomography (PET) scanners, where antimatter annihilation reactions are used to produce gamma rays for medical imaging.

In summary, mass-energy equivalence is a fundamental concept in physics that shows that mass and energy are interchangeable. It is a cornerstone of modern physics and has numerous practical applications in energy production, nuclear physics, and particle physics. Albert Einstein's equation,  , succinctly captures this profound relationship.


Gravity

Newtons Law of Gravitation

edit
  1. The Law of Gravitation
  2. Gravitational Field
  3. Gravitational Flux
  4. Flux from Multiple Masses
  5. Kepler's Laws
  6. Use of Conservation Laws
  7. Effects of Relativity
Problems

Modern theories of Gravitation

edit
  1. General relativity

Speculative theories

edit
  1. Brans-Dicke theory

Further Reading

edit


Space Physics

Space physics, also known as space plasma physics or astrophysical plasma physics, is a branch of space science and physics that focuses on the study of charged particles and electromagnetic fields in space environments. It seeks to understand the behavior of plasmas (ionized gases) and the physical processes that occur in space, ranging from the Earth's magnetosphere to the broader universe. Here are key aspects of space physics:

  • Plasma in Space: Space is filled with plasmas, which consist of charged particles (ions and electrons) that interact with electromagnetic fields. These plasmas can be found in various space environments, including the solar wind, planetary magnetospheres, and interstellar and intergalactic space.
  • Solar-Terrestrial Physics: A significant portion of space physics is devoted to studying the interaction between the solar wind (a stream of charged particles from the Sun) and the Earth's magnetic field. This interaction gives rise to phenomena such as geomagnetic storms, auroras, and the Van Allen radiation belts.
  • Magnetospheres: Space physics investigates the magnetospheres of planets and celestial bodies. These protective magnetic fields influence the behavior of charged particles in space and play a crucial role in shielding planets from harmful solar and cosmic radiation.
  • Space Weather: Space physicists study space weather, which includes the conditions in space that can affect technology and systems on Earth and in space. Space weather phenomena include solar flares, coronal mass ejections, and their impact on satellite communications, navigation systems, and power grids.
  • Astrophysical Plasmas: Beyond our solar system, space physics explores the behavior of plasmas in astrophysical environments. This includes the study of accretion disks around black holes, the interstellar medium, and the behavior of plasmas in galaxies and galaxy clusters.
  • Cosmic Rays: Space physics investigates cosmic rays, which are high-energy charged particles originating from various sources in the universe, including the Sun and distant astrophysical phenomena. Understanding cosmic rays can provide insights into astrophysical processes.
  • Satellite Missions: Space physicists often utilize space-based observatories and satellite missions to collect data and conduct experiments in space. These missions enable the direct measurement of space plasmas, electromagnetic fields, and other space phenomena.
  • Numerical Modeling: Numerical simulations and computer modeling play a significant role in space physics. Researchers use mathematical models to simulate the behavior of plasmas and electromagnetic fields in various space environments, helping to predict and understand complex space phenomena.
  • Interdisciplinary Field: Space physics is highly interdisciplinary, involving elements of plasma physics, astrophysics, magnetohydrodynamics (MHD), and geophysics. Researchers collaborate across disciplines to address complex questions related to space and plasma physics.
  • Scientific Questions: Key scientific questions in space physics include understanding the origin and evolution of planetary magnetospheres, the acceleration of charged particles in space, the dynamics of solar and astrophysical plasmas, and the impact of space weather on human activities and technology.

Space physics is a dynamic field that continues to advance our understanding of the complex and interconnected processes that occur in space environments. It has practical applications in space exploration, satellite technology, and space weather prediction, contributing to our ability to navigate and utilize space resources effectively.



Constants

Constants

edit
  1. Constants of Nature
  2. Miscellaneous Conversions


Table of nuclides

{split}

A table with the basic properties of all nuclides.

Legend

α Alpha decay
β- Beta decay
β+ Positron emission
K+ Electron capture
IT Internal conversion
SF Spontaneous fission
p Proton emission
n Neutron emission


Neutron

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
0n 614.6s 1/2+ %β-=100

Hydrogen

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
1H stable 1/2+ %Abundance=99.985
2H stable 1+ %Abundance=0.015
3H 12.33 a 1/2+ %β-=100
4H 2-

Helium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
3He stable 1/2+ %Abundance=0.000137
4He stable 0+ %Abundance=99.999863
5He 0.60 MeV 3/2- %n=100
6He 806.7 ms 0+ %β-=100
7He 160 keV (3/2)- %n=100
8He 119.0 ms 0+ %β-=100, %β-n=16
9He 0.30 MeV (1/2-) %n=100
10He 0.3 MeV 0+ %n=100

Lithium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
4Li 2-
5Li 1.5 MeV 3/2- %p=100
6Li stable 1+ 1+ %Abundance=7.5
7Li stable 3/2- %Abundance=92.5
8Li 838 ms 2+ %β-=100, %β-2α=100
9Li 178.3 ms 3/2- %β-=100, %β-n2α=49.5
10Li 1.2 MeV %n=100
11Li 8.5 ms 3/2- %β-=100, %β-n=85 , %β-2n=4.1 , %β-2α3n=1.9

Beryllium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
6Be 92 keV 0+ %2pα=100
7Be 53.12 d 3/2- %K=100
8Be 6.8 eV 0+ %2α=100
9Be stable 3/2- 3/2- %Abundance=100
10Be 1510000 a 0+ %β-=100
11Be 13.81 s 1/2+ %β-=100, %β-α=3.1
12Be 23.6 ms 0+ %β-=100
13Be 0.9 MeV (1/2,5/2)+ %n=100
14 Be 4.35 ms 0+ %β-=100, %β-n=81 , %β-2n=5

Boron

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
7B 1.4 MeV (3/2-) %XP=100
8B 770 ms 2+ %K+%β+=100, %K2α=100
9B 0.54 keV 3/2- %2αP=100
10B stable 3+ %Abundance=19.9
11B stable 3/2- %Abundance=80.1
12B 20.20 ms 1+ %β-=100, %β-3α=1.58
13B 17.36 ms 3/2- %β-=100, %β-n=0.28
14B 13.8 ms 2- %β-=100
15B 10.5 ms %β-=100
16B 200 ps (0-) %n=100
17B 5.08 ms (3/2-) %β-=100, %β-n=?

Carbon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
8C 230 keV 0+ %Xp=100
9C 126,5 ms (3/2-) %K+%β+=100, %Kp2α=?
10C 19.255 s 0+ %K+%β+=100
11C 20.39 m 3/2- %K+%β+=100
12C stable 0+ %Abundance=98.90
13C stable 1/2- %Abundance=1.10
14C 5730 a 0+ %β-=100
15C 2.449 s 1/2+ %β-=100
16C 0.747 s 0+ %β-=100, %β-n > 98.8
17C 0.193 s %β-=100, %β-n=32
18C 0.095 s 0+ %β-=100, %β-n ~ 25
19C 0.046 s %β-=100, %β-n=47
20C 0.014 s 0+ %β-=100, %β-n=72

Nitrogen

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
11N 740 keV 1/2+ %p=?
12N 11.000 ms 1+ %K+%β+=100, %K3α=3.5
13N 9.965 m 1/2- %K+%β+=100
14N stable 1+ %Abundance=99.634
15N stable 1/2- %Abundance=0.366
16N 7.13 s 2- %β-=100, %β-α=0.00120
17N 4.173 s 1/2- %β-=100, %β-n=95.1
18N 624 ms 1- %β-=100, %β-α=12.2 , %β-n=14.3
19N 0.304 s (1/2-) %β-=100, %β-n=62.4
20N 100 ms %β-=100, %β-n ~ 61
21N 85 ms %β-=100, %β-n=84
22N 24 ms %β-=100, %β-n=35

Oxygen

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
12O 0.40 MeV 0+ %2p=60
13O 8.58 ms (3/2-) %K+%β+=100, %Kp=12
14O 70.606 s 0+ %K+%β+=100
15O 122.24 s 1/2- %K+%β+=100
16O stable 0+ %Abundance=99.762
17O stable 5/2+ %Abundance=0.038
18O stable 0+ %Abundance=0.200
19O 26.91 s 5/2+ %β-=100
20O 13.51 s 0+ %β-=100
21O 3.42 s (1/2,3/2,5/2)+ %β-=100
22O 2.25 s 0+ %β-=100
23O 82 ms %β-=100, %β-n=31
24O 61 ms 0+ %β-=100, %β-n=58

Fluorine

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
 F (2-) %p=100
 F 1.0 MeV (1/2+) %p=100
 F 40 keV 0- %p=100
 F 64.49 s 5/2+ %K+%β+=100
 F 109.77 m 1+ %K+%β+=100
 F stable 1/2+ %Abundance=100
 F 11.00 s 2+ %β-=100
 F 4.158 s 5/2+ %β-=100
 F 4.23 s 4+,(3+) %β-=100
 F 2.23 s (3/2,5/2)+ %β-=100
 F 0.34 s (1,2,3)+ %β-=100
 F 59 ms uo

Neon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
16Ne 122 keV 0+ %2p=100
17Ne 109.2 ms 1/2- %K+%β+=100, %Kp=95.8 , %Kα=2.7
18Ne 1672 ms 0+ %K+%β+=100
19Ne 17.22 s 1/2+ %K+%β+=100
20Ne stable 0+ %Abundance=90.48
21Ne stable 3/2+ %Abundance=0.27
22Ne stable 0+ %Abundance=9.25
23Ne 37.24 s 5/2+ %β-=100
24Ne 3.38 m 0+ %β-=100
25Ne 602 ms (1/2,3/2)+ %β-=100
26Ne 197 ms 0+ %β-=100, %β-n=0.13
27Ne 32 ms %β-=100, %β-n=2.0
28Ne 17 ms 0+ %β-=100, %β-n=22
29Ne 0.2 s %β-=100

Sodium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
19Na %p=?
20Na 447.9 ms 2+ %K+%β+=100, %Kα=20.5
21Na 22.49 s 3/2+ %K+%β+=100
22Na 2.6019 a 3+ %K+%β+=100
23Na stable 3/2+ %Abundance=100
24Na 14.9590 s 4+ %β-=100
24m1Na 20.20 ms 1+ %IT=99.95, %β-=0.05
25Na 59.1 s 5/2+ %β-=100
26Na 1.072 s 3+ %β-=100
27Na 301 ms 5/2+ %β-=100 , %β-n=0.13
28Na 30.5 ms 1+ %β-=100 , %β-n=0.58
29Na 44.9 ms 3/2 %β-=100 , %β-n=21.5
30Na 48 ms 2+ %β-=100 , %β-n=30 , %β-2n=1.17 , %β-α=5.5E-5
31Na 17.0 ms 3/2+ %β-=100, %β-n=37 , %β-2n=0.9
32Na 13.2 ms (3-,4-) %β-=100 , %β-n=24 , %β-2n=8.3
33Na 8.2 ms %β-=100, %β-n=52 , %β-2n=12
34Na 5.5 ms %β-=100, %β-n=?, %β-2n=?
35Na 1.5 ms %β-=100, %β-n=?

Magnesium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
20Mg 95 ms 0+ %K+%β+=100, %Kp ~ 3
21Mg 122 ms (3/2,5/2)+ %K+%β+=100 , %Kp=29.3
22Mg 3.857 s 0+ %K+%β+=100
23Mg 11.317 s 3/2+ %K+%β+=100
24Mg stable 0+ %Abundance=78.99
25Mg stable 5/2+ %Abundance=10.00
26Mg stable 0+ %Abundance=11.01
27Mg 9.458 m 1/2+ %β-=100
28Mg 20.91 h 0+ %β-=100
29Mg 1.30 s 3/2+ %β-=100
30Mg 335 ms 0+ %β-=100
31Mg 230 ms %β-=100 , %β-n=1.7
32Mg 120 ms 0+ %β-=100 , %β-n=2.4
33Mg 90 ms %β-=100, %β-n=17
34Mg 20 ms 0+ %β-=100, %β-n=?

Aluminium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
22Al 70 ms %K+%β+=100 , %Kp+%K2p ~ 2.9
23Al 0.47 s %K+%β+=100, %Kp=?
24Al 2.053 s 4+ %K+%β+=100, %Kα=0.035
24m1Al 131.3 ms 1+ %IT=82 , %K+%β+=18 , %Kα=0.028
25Al 7.183 s 5/2+ %K+%β+=100
26Al 7.17e+5 a 5+ %K+%β+=100
26m1Al 6.3452 s 0+ %K+%β+=100
27Al stable 5/2+ %Abundance=100
28Al 2.2414 m 3+ %β-=100
29Al 6.56 m 5/2+ %β-=100
30Al 3.60 s 3+ %β-=100
31Al 644 ms (3/2,5/2)+ %β-=100
32Al 33 ms 1+ %β-=100

Silicon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
22Si 6 ms 0+ %K+%β+=100, %Kp=?
23Si
24Si 102 ms 0+ %K+%β+=100, %Kp ~ 7
25Si 220 ms 5/2+ %K+%β+=100, %Kp=?
26Si 2.234 s 0+ %K+%β+=100
27Si 4.16 s 5/2+ %K+%β+=100
28Si stable 0+ %Abundance=92.23
29Si stable 1/2+ %Abundance=4.67
30Si stable 0+ %Abundance=3.10
31Si 157.3 m 3/2+ %β-=100
32Si 150 a 0+ %β-=100
33Si 6.18 s %β-=100
34Si 2.77 s 0+ %β-=100
35Si 0.78 s %β-=100
36Si 0.45 s 0+ %β-=100, %β-n < 10

Phosphorus

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
26P 20 ms (3+) %K+%β+=100, %Kp+%K2p ~ 1.9
27P 260 ms 1/2+ %K+%β+=100, %Kp ~ 0.05
28P 270.3 ms 3+ %K+%β+=100, %Kp=0.0013 , %Kα=0.00086
29P 4.140 s 1/2+ %K+%β+=100
30P 2.498 m 1+ %K+%β+=100
31P stable 1/2+ %Abundance=100
32P 14.262 d 1+ %β-=100
33P 25.34 d 1/2+ %β-=100
34P 12.43 s 1+ %β-=100
35P 47.3 s 1/2+ %β-=100
36P 5.6 s %β-=100
37P 2.31 s %β-=100
38P 0.64 s %β-=100, %β-n < 10
39P 0.16 s %β-=100, %β-n=41
40P 260 ms %β-=100, %β-n=30
41P 120 ms %β-=100, %β-n=30
42P 110 ms %β-=100, %β-n=50
43P 33 ms %β-=100, %β-n=100


Sulphur

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
27S 21 ms %K+%β+=100, %K2p=2.0, %Kp=?
28S 125 ms 0+ %K+%β+=100, %Kp=21
29S 187 ms 5/2+ %K+%β+=100, %Kp=47
30S 1.178 s 0+ %K+%β+=100
31S 2.572 s 1/2+ %K+%β+=100
32S stable 0+ %Abundance=95.02
33S stable 3/2+ %Abundance=0.75
34S stable 0+ %Abundance=4.21
35S 87.32 d 3/2+ %β-=100
36S stable 0+ %Abundance=0.02
37S 5.05 m 7/2- %β-=100
38S 170.3 m 0+ %β-=100
39S 11.5 s (3/2,5/2,7/2) - %β-=100
40S 8.8 s 0+ %β-=100
41S
42S 0.56 s 0+ %β-=100, %β-n < 4
43S 220 ms %β-=100, %β-n=40
44S 123 ms 0+ %β-=100, %β-n=18
45S 82 ms %β-=100, %β-n=54

Chlorine

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
31Cl 150 ms %K+%β+=100, %Kp=0.44
32Cl 298 ms 1+ %K+%β+=100 , %Kα=0.054 , %Kp=0.026
33Cl 2.511 s 3/2+ %K+%β+=100
34Cl 1.5264 s 0+ %K+%β+=100
34m1Cl 32.00 m 3+ %K+%β+=55.4 , %IT=44.6
35Cl stable 3/2+ %Abundance=75.77
36Cl 3.01e+5 a 2+ %β-=98.10 , %K+%β+=1.90
37Cl stable 3/2+ %Abundance=24.23
38Cl 37.24 m 2- %β-=100
38m1Cl 715 ms 5- %IT=100
39Cl 55.6 m 3/2+ %β-=100
40Cl 1.35 m 2- %β-=100
41Cl 38.4 s (1/2,3/2)+ %β-=100
42Cl 6.8 s %β-=100
43Cl 3.3 s %β-=100
44Cl 434 ms %β-=100, %β-n < 8
45Cl 400 ms %β-=100, %β-n=24
46Cl 223 ms %β-=100, %β-n=60
47Cl %β-=100, %β-n < 3

Argon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
30Ar 20 ns 0+ %p=?
31Ar 15.1 ms %K+%β+=100, %Kp=42 , %K2p=2.48 , %K3p=2.1
32Ar 98 ms 0+ %K+%β+=100, %Kp=43
33Ar 173.0 ms 1/2+ %K+%β+=100, %Kp=38.7
34Ar 844.5 ms 0+ %K+%β+=100
35Ar 1.775 s 3/2+ %K+%β+=100
36Ar stable 0+ %Abundance=0.337
37Ar 35.04 d 3/2+ %K=100
38Ar stable 0+ %Abundance=0.063
39Ar 269 a 7/2- %β-=100
40Ar stable 0+ %Abundance=99.600
41Ar 109.34 m 7/2- %β-=100
42Ar 32.9 a 0+ %β-=100
43Ar 5.37 m (3/2,5/2) %β-=100
44Ar 11.87 m 0+ %β-=100
45Ar 21.48 s %β-=100
46Ar 8.4 s 0+ %β-=100
47Ar 700 ms %β-=100, %β-n < 1

Potassium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
35K 190 ms 3/2+ %K+%β+=100, %Kp=0.37
36K 342 ms 2+ %K+%β+=100, %Kp=0.048 , %Kα=0.0034
37K 1.226 s 3/2+ %K+%β+=100
38K 7.636 m 3+ %K+%β+=100
38m1K 923.9 ms 0+ %K+%β+=100
39K stable 3/2+ %Abundance=93.2581
40K 1.277e+9 a 4- %Abundance=0.0117, %β-=89.28 , %K+%β+=10.72
41K stable 3/2+ %Abundance=6.7302
42K 12.360 h 2- %β-=100
43K 22.3 h 3/2+ %β-=100
44K 22.13 m 2- %β-=100
45K 17.3 m 3/2+ %β-=100
46K 105 s (2-) %β-=100
47K 17.50 s 1/2+ %β-=100
48K 6.8 s (2-) %β-=100, %β-n=1.14
49K 1.26 s (3/2+) %β-=100, %β-n=86
50K 472 ms (0-,1,2-) %β-=100, %β-n=29
51K 365 ms (1/2+,3/2+) %β-=100 , %β-n=47
52K 105 ms %β-=100, %β-n=91
53K 30 ms (3/2+) %β-=100, %β-n=85
54K 10 ms %β-=100, %β-n=?

Calcium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
35Ca 50 ms %K+%β+=100, %K2p=?
36Ca 102 ms 0+ %K+%β+=100, %Kp=57
37Ca 181.1 ms 3/2+ %K+%β+=100, %Kp=76
38Ca 440 ms 0+ %K+%β+=100
39Ca 859.6 ms 3/2+ %K+%β+=100
40Ca stable 0+ %Abundance=96.941
41Ca 1.03e+5 a 7/2- %K=100
42Ca stable 0+ %Abundance=0.647
43Ca stable 7/2- %Abundance=0.135
44Ca stable 0+ %Abundance=2.086
45Ca 162.61 d 7/2- %β-=100
46Ca stable 0+ %Abundance=0.004
47Ca 4.536 d 7/2- %β-=100
48Ca 6e+18 a 0+ %Abundance=0.187, %β-=?, %ββ=?
49Ca 8.718 m 3/2- %β-=100
50Ca 13.9 s 0+ %β-=100
51Ca 10.0 s ( 3/2- ) %β-=100, %β-n=?
52Ca 4.6 s 0+ %β-=100
53Ca 90 ms ( 3/2- ,5/2-) %β-=100, %β-n+%β-2n > 30

Scandium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
40Sc 182.3 ms 4- %K+%β+=100, %Kα=0.017 , %Kp=0.44
41Sc 596.3 ms 7/2- %K+%β+=100
42Sc 681.3 ms 0+ %K+%β+=100
42m1Sc 61.7 s 7+,(5+,6+) %K+%β+=100
43Sc 3.891 h 7/2- %K+%β+=100
44Sc 3.927 h 2+ %K+%β+=100
44m1Sc 58.6 h 6+ %IT=98.80 , %K+%β+=1.20
45Sc stable 7/2- %Abundance=100
45m1Sc 318 ms 3/2+ %IT=100
46Sc 83.79 d 4+ %β-=100
46m1Sc 18.75 s 1- %IT=100
47Sc 3.3492 d 7/2- %β-=100
48Sc 43.67 h 6+ %β-=100
49Sc 57.2 m 7/2- %β-=100
50Sc 102.5 s 5+ %β-=100
50m1Sc 0.35 s 2+,3+ %IT > 97.5 < 100, %β-<2.5
51Sc 12.4 s (7/2)- %β-=100
52Sc 8.2 s 3+ %β-=100

Titanium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
39Ti 26 ms ( 3/2+ ) %K=100, %Kp+%K2p ~ 14
40Ti 50 ms 0+ %K+%β+=100
41Ti 80 ms 3/2+ %K+%β+=100, %Kp ~ 100
42Ti 199 ms 0+ %K+%β+=100
43Ti 509 ms 7/2- %K+%β+=100
44Ti 63 a 0+ %K=100
45Ti 184.8 m 7/2- %K+%β+=100
46Ti stable 0+ %Abundance=8.0
47Ti stable 5/2- %Abundance=7.3
48Ti stable 0+ %Abundance=73.8
49Ti stable 7/2- %Abundance=5.5
50Ti stable 0+ %Abundance=5.4
51Ti 5.76 m 3/2- %β-=100
52Ti 1.7 m 0+ %β-=100
53Ti 32.7 s (3/2)- %β-=100
54Ti 0+
55Ti 320 ms ( 3/2- ) %β-=100
56Ti 160 ms 0+ %β-=100, %β-n=0.06 s ys
57Ti 180 ms (5/2-) %β-=100, %β-n=0.04 sys
58Ti 0+
59Ti (5/2-) %β-=?
60Ti 0+ %β-=?
61Ti (1/2-) %β-=?, %β-n=?

Vanadium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
43V 800 ms ( 7/2- ) %K+%β+=100
44V 90 ms (2+) %K+%β+=100, %Kα=?
44m1V 150 ms (6+) %K+%β+=100
45V 547 ms 7/2- %K+%β+=100
46V 422.37 ms 0+ %K+%β+=100
46m1V 1.02 ms 3+ %IT=100
47V 32.6 m 3/2- %K+%β+=100
48V 15.9735 d 4+ %K+%β+=100
49V 330 d 7/2- %K=100
50V 1.4e+17 a 6+ %Abundance=0.250, %K+%β+=83 , %β-=17
51V stable 7/2- %Abundance=99.750
52V 3.743 m 3+ %β-=100
53V 1.61 m 7/2- %β-=100
54V 49.8 s 3+ %β-=100
55V 6.54 s ( 7/2- ) %β-=100
56V 230 ms (3+) %β-=100
57V 320 ms ( 7/2- ) %β-=100, %β-n=?
58V 200 ms (3+) %β-=100
59V 130 ms ( 7/2- ) %β-=100
60V 200 ms (3+) %β-=100, %β-n=0.03 sys
61V
62V (3+) %β-=?
63V ( 7/2- ) %β-=?
64V %β-=?

Chromium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
43Cr 21 ms ( 3/2+ ) %K+%β+=100, %Kp=?, %Kα=?
44Cr 53 ms 0+ %K+%β+=100, %Kp<10
45Cr 50 ms %K+%β+=100, %Kp ~ 27
46Cr 0.26 s 0+ %K+%β+=100
47Cr 500 ms 3/2- %K+%β+=100
48Cr 21.56 h 0+ %K+%β+=100
49Cr 42.3 m 5/2- %K+%β+=100
50Cr 1.8e+17 a 0+ %Abundance=4.345, %KK=?
51Cr 27.7025 d 7/2- %K=100
52Cr stable 0+ %Abundance=83.789
53Cr stable 3/2- %Abundance=9.501
54Cr stable 0+ %Abundance=2.365
55Cr 3.497 m 3/2- %β-=100
56Cr 5.94 m 0+ %β-=100
57Cr 21.1 s 3/2-,5/2-, 7/2- %β-=100
58Cr 7.0 s 0+ %β-=100
59Cr 0.74 s %β-=100
60Cr 0.57 s 0+ %β-=100
61Cr 270 ms (5/2-) %β-=100, %β-n=0.6 sys
62Cr 190 ms 0+ %β-=100, %β-n=1.0 sys
63Cr 110 ms (1/2-) %β-=100, %β-n=1.4 sys
64Cr 0+
65Cr (1/2-) %β-=?
66Cr 0+ %β-=100
67Cr (1/2-) %β-=?

Manganese

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
46Mn 41 ms %K=100, %Kp=32
47Mn 100 ms %K+%β+=100, %Kp > 3.4
48Mn 158.1 ms 4+ %K+%β+=100, %Kp=0.28 , %Kα<6E-4
49Mn 382 ms 5/2- %K+%β+=100
50Mn 283.88 ms 0+ %K+%β+=100
50m1Mn 1.75 m 5+ %K+%β+=100
51Mn 46.2 m 5/2- %K+%β+=100
52Mn 5.591 d 6+ %K+%β+=100
52m1Mn 21.1 m 2+ %K+%β+=98.25 , %IT=1.75
53Mn 3.74e+6 a 7/2- %K=100
54Mn 312.3 d 3+ %K+%β+=100, %β- < 2.9E-4
55Mn stable 5/2- %Abundance=100
56Mn 2.5785 h 3+ %β-=100
57Mn 85.4 s 5/2- %β-=100
58Mn 3.0 s 1+ %β-=100
58m1Mn 65.2 s (4)+ %β- ~ 80, %IT ~ 20
59Mn 4.6 s 3/2-,5/2- %β-=100
60Mn 51 s 0+ %β-=100
60m1Mn 1.77 s 3+ %β-=88.5 , %IT=11.5
61Mn 0.71 s (5/2-) %β-=100
62Mn 0.88 s (3+) %β-=100
63Mn 0.25 s %β-=100
64Mn 140 ms (3+) %β-=100, %β-n=1.4 sys
65Mn 110 ms (5/2-) %β-=100, %β-n=6.9 sys
66Mn 90 ms %β-=100, %β-n=11 sys

Iron

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
46Fe 20 ms 0+ %K=100, %Kp=?
47Fe 27 ms %K+%β+=100, %Kp=?
48Fe 44 ms 0+ %K+%β+=100, %Kp > 3.6
49Fe 70 ms ( 7/2- ) %K+%β+=100, %Kp > 62
50Fe 150 ms 0+ %K+%β+=100, %β+P ~ 0
51Fe 305 ms 5/2- %K+%β+=100
52Fe 8.275 h 0+ %K+%β+=100
52m1Fe 45.9 s (12+) %K+%β+=100
53Fe 8.51 m 7/2- %K+%β+=100
53m1Fe 2.58 m 19/2- %IT=100
54Fe stable 0+ %Abundance=5.8
55Fe 2.73 a 3/2- %K=100
56Fe stable 0+ %Abundance=91.72
57Fe stable 1/2- %Abundance=2.2
58Fe stable 0+ %Abundance=0.28
59Fe 44.503 d 3/2- %β-=100
60Fe 1.5e+6 a 0+ %β-=100
61Fe 5.98 m 3/2-,5/2- %β-=100
62Fe 68 s 0+ %β-=100
63Fe 6.1 s (5/2)- %β-=100
64Fe 2.0 s 0+ %β-=100
65Fe 0.4 s %β-=100
66Fe 440 ms 0+ %β-=100
67Fe 470 ms (1/2-) %β-=100, %β-n=1.1 s ys
68Fe 0.10 s 0+ %β-=100
69Fe 170 ms (1/2-) %β-=100, %β-n=6.9 sys

Cobalt

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
50Co 44 ms (6+) %K+%β+=100, %Kp > 42
51Co ( 7/2- )
52Co 18 ms %K+%β+=100
53Co 240 ms ( 7/2- ) %K+%β+=100
53m1Co 247 ms (19/2-) %K+%β+ ~ 98.5, %p ~ 1.5
54Co 193.23 ms 0+ %K+%β+=100
54m1Co 1.48 m (7)+ %K+%β+=100
55Co 17.53 h 7/2- %K+%β+=100
56Co 77.27 d 4+ %K+%β+=100
57Co 271.79 d 7/2- %K=100
58Co 70.86 d 2+ %K+%β+=100
58m1Co 9.04 h 5+ %IT=100
59Co stable 7/2- %Abundance=100
60Co 5.2714 a 5+ %β-=100
60m1Co 10.467 m 2+ %IT=99.76 , %β-=0.24
61Co 1.650 h 7/2- %β-=100
62Co 1.50 m 2+ %β-=100
62m1Co 13.91 m 5+ %β- ~ 100, %IT < 1
63Co 27.4 s (7/2)- %β-=100
64Co 0.30 s 1+ %β-=100
65Co 1.20 s (7/2)- %β-=100
66Co 0.233 s (3+) %β-=100
67Co 0.42 s ( 7/2- ) %β-=100
68Co 0.18 s %β-=100
69Co 0.27 s %β-=100
70Co 150 ms %β-=100, %β-n=2.5 sys
71Co 210 ms ( 7/2- ) %β-=100, %β-n=2.6 sys
72Co 90 ms %β-=100, %β-n=4.8 sys
73Co ( 7/2- ) %β-=?
74Co %β-=?
75Co ( 7/2- ) %β-=?

Nickel

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
52Ni 38 ms 0+ %K+%β+=100, %Kp=17
53Ni 45 ms ( 7/2- ) %K+%β+=100, %Kp ~ 45
54Ni 0+ %K+%β+=100
55Ni 212.1 ms 7/2- %K+%β+=100
56Ni 6.077 d 0+ %K+%β+=100
57Ni 35.60 h 3/2- %K+%β+=100
58Ni stable 0+ %Abundance=68.077
59Ni 7.6e+4 a 3/2- %K+%β+=100
60Ni stable 0+ %Abundance=26.223
61Ni stable 3/2- %Abundance=1.140
62Ni stable 0+ %Abundance=3.634
63Ni 100.1 a 1/2- %β-=100
64Ni stable 0+ %Abundance=0.926
65Ni 2.5172 h 5/2- %β-=100
66Ni 54.6 h 0+ %β-=100
67Ni 21 s (1/2-) %β-=100
68Ni 19 s 0+ %β-=100
69Ni 11.4 s %β-=100
70Ni 0+
71Ni 1.86 s %β-=100
72Ni 2.1 s 0+ %β-=100
73Ni 0.70 s (7/2+) %β-=100, %β-n=0.3 sys
74Ni 0.54 s 0+ %β-=100, %β-n=4.5 sys
75Ni 0.6 s (7/2+) %β-=100, %β-n=8.4 sys
76Ni 0.24 s 0+ %β-=100, %β-n=?

Copper

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
57Cu 199.4 ms 3/2- %K+%β+=100
58Cu 3.204 s 1+ %K+%β+=100
59Cu 81.5 s 3/2- %K+%β+=100
60Cu 23.7 m 2+ %K+%β+=100
61Cu 3.333 h 3/2- %K+%β+=100
62Cu 9.74 m 1+ %K+%β+=100
63Cu stable 3/2- %Abundance=69.17
64Cu 12.700 h 1+ %K+%β+=61.0 , %β-=39.0
65Cu stable 3/2- %Abundance=30.83
66Cu 5.120 m 1+ %β-=100
67Cu 61.83 h 3/2- %β-=100
68Cu 31.1 s 1+ %β-=100
68m1Cu 3.75 m (6-) %IT=84 , %β-=16
69Cu 2.85 m 3/2- %β-=100
70Cu 4.5 s (1+) %β-=100
70m1Cu 47 s (4)- %β-=100
71Cu 19.5 s ( 3/2- ) %β-=100
72Cu 6.6 s (1+) %β-=100
73Cu 3.9 s %β-=100
74Cu 1.594 s (1+,3+) %β-=100
75Cu 1.224 s %β-=100, %β-n=3.5
76Cu 0.641 s %β-=100, %β-n=3
76m1Cu 1.27 s %β-=100
77Cu 469 ms %β-=100, %β-n=?
78Cu 342 ms %β-=100
79Cu 188 ms %β-=100, %β-n=55

Zinc

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
57Zn 40 ms ( 7/2- ) %K+%β+=100, %Kp > 65
58Zn 65 ms 0+ %K+%β+=100
59Zn 182.0 ms 3/2- %K+%β+=100, %Kp=0.10
60Zn 2.38 m 0+ %K+%β+=100
61Zn 89.1 s 3/2- %K+%β+=100
62Zn 9.186 h 0+ %K+%β+=100
63Zn 38.47 m 3/2- %K+%β+=100
64Zn stable 0+ %Abundance=48.6
65Zn 244.26 d 5/2- %K+%β+=100
66Zn stable 0+ %Abundance=27.9
67Zn stable 5/2- %Abundance=4.1
68Zn stable 0+ %Abundance=18.8
69Zn 56.4 m 1/2- %β-=100
69m1Zn 13.76 h 9/2+ %IT=99.967 , %β-=0.033
70Zn 5e+14 a 0+ %Abundance=0.6
71Zn 2.45 m 1/2- %β-=100
71m1Zn 3.96 h 9/2+ %β-=100, %IT < 0.05
72Zn 46.5 h 0+ %β-=100
73Zn 23.5 s (1/2)- %β-=100
73m1Zn 5.8 s (7/2+) %β-=?, %IT=?
74Zn 95.6 s 0+ %β-=100
75Zn 10.2 s (7/2+) %β-=100
76Zn 5.7 s 0+ %β-=100
77Zn 2.08 s (7/2+) %β-=100
77m1Zn 1.05 s (1/2-) %IT > 50, %β- < 50
78Zn 1.47 s 0+ %β-=100
79Zn 995 ms (9/2+) %β-=100, %β-n=1.3
80Zn 0.545 s 0+ %β-=100, %β-n=1.0
81Zn 0.29 s %β-=100, %β-n=7.5

Gallium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
61Ga 0.15 s (3/2- ) %K+%β+=100
62Ga 116.12 ms 0+ %K+%β+=100
63Ga 32.4 s 3/2- ,5/2- %K+%β+=100
64Ga 2.627 m 0+ %K+%β+=100
65Ga 15.2 m 3/2- %K+%β+=100
66Ga 9.49 h 0+ %K+%β+=100
67Ga 3.2612 d 3/2- %K=100
68Ga 67.629 m 1+ %K+%β+=100
69Ga stable 3/2- %Abundance=60.108
70Ga 21.14 m 1+ %β-=99.59 , %K=0.41
71Ga stable 3/2- %Abundance=39.892
72Ga 14.10 h 3- %β-=100
72m1Ga 39.68 ms ( 0+) %IT=100
73Ga 4.86 h 3/2- %β-=100
74Ga 8.12 m (3-) %β-=100
74m1Ga 9.5 s (0) %IT > 50, %β- < 50
75Ga 126 s 3/2- %β-=100
76Ga 32.6 s (2+,3+) %β-=100
77Ga 13.2 s (3/2- ) %β-=100
78Ga 5.09 s (3+) %β-=100
79Ga 2.847 s (3/2- ) %β-=100, %β-n=0.089
80Ga 1.697 s (3) %β-=100, %β-n=0.89
81Ga 1.217 s (5/2- ) %β-=100 , %β-n=11.9
82Ga 0.599 s (1,2,3) %β-=100, %β-n=22.3
83Ga 0.31 s %β-=100, %β-n=40
84Ga 85 ms %β-=100, %β-n=70


Germanium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
61Ge 40 ms (3/2- ) %K+%β+=100, %Kp ~ 80
62Ge 0+ %K+%β+=100
63Ge 95 ms %K+%β+=100
64Ge 63.7 s 0+ %K+%β+=100
65Ge 30.9 s (3/2) - %K+%β+=100, %Kp=0.011
66Ge 2.26 h 0+ %K+%β+=100
67Ge 18.9 m 1/2- %K+%β+=100
68Ge 270.8 d 0+ %K=100
69Ge 39.05 h 5/2- %K+%β+=100
70Ge stable 0+ %Abundance=21.23
71Ge 11.43 d 1/2- %K=100
71m1Ge 20.40 ms 9/2+ %IT=100
72Ge stable 0+ %Abundance=27.66
73Ge stable 9/2+ %Abundance=7.73
73m1Ge 0.499 s 1/2- %IT=100
74Ge stable 0+ %Abundance=35.94
75Ge 82.78 m 1/2- %β-=100
75m1Ge 47.7 s 7/2+ %IT=99.970 , %β-=0.030
76Ge stable 0+ %Abundance=7.44
77Ge 11.30 h 7/2+ %β-=100
77m1Ge 52.9 s 1/2- %β-=81 , %IT=19
78Ge 88.0 m 0+ %β-=100
79Ge 18.98 s (1/2 ) - %β-=100
79m1Ge 39.0 s (7/2+) %β-=96 , %IT=4
80Ge 29.5 s 0+ %β-=100
81Ge 7.6 s (9/2+) %β-=100
81m1Ge 7.6 s (1/2+) %β-=100
82Ge 4.60 s 0+ %β-=100
83Ge 1.85 s (5/2+) %β-=100

Arsenic

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
65As 0.19 s %K+%β+=100
66As 95.77 ms %K+%β+=100
67As 42.5 s (5/2- ) %K+%β+=100
68As 151.6 s 3+ %K+%β+=100
69As 15.2 m 5/2- %K+%β+=100
70As 52.6 m 4(+) %K+%β+=100
71As 65.28 h 5/2- %K+%β+=100
72As 26.0 h 2- %K+%β+=100
73As 80.30 d 3/2- %K=100
74As 17.77 d 2- %β-=34 , %K+%β+=66
75As stable 3/2- %Abundance=100
75m1As 16.79 ms 9/2+ %IT=100
76As 1.0778 d 2- %β-=100
77As 38.83 h 3/2- %β-=100
78As 90.7 m 2- %β-=100
79As 9.01 m 3/2- %β-=100
80As 15.2 s 1+ %β-=100
81As 33.3 s 3/2- %β-=100
82As 19.1 s (1+) %β-=100
82m1As 13.6 s (5-) %β-=100
83As 13.4 s (5/2- ,3/2- ) %β-=100
84As 4.5 s (3-) %β-=100, %β-n=0.28
85As 2.021 s (3/2- ) %β-=100, %β-n=59.4
86As 0.945 s %β-=100, %β-n=33
87As 0.48 s (3/2- ) %β-=100, %β-n=15.4

Selenium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
67Se 60 ms %K+%β+=100, %Kp=0.5
68Se 35.5 s 0+ %K+%β+=100
69Se 27.4 s (3/2- ) %K+%β+=100, %Kp=0.045
70Se 41.1 m 0+ %K+%β+=100
71Se 4.74 m 3/2- ,5/2- %K+%β+=100
72Se 8.40 d 0+ %K=100
73Se 7.15 h 9/2+ %K+%β+=100
73m1Se 39.8 m 3/2- %K+%β+=27.4 , %IT=72.6
74Se stable 0+ %Abundance=0.89
75Se 119.779 d 5/2+ %K=100
76Se stable 0+ %Abundance=9.36
77Se stable 1/2- %Abundance=7.63
77m1Se 17.36 s 7/2+ %IT=100
78Se stable 0+ %Abundance=23.78
79Se 1.13e6 a 7/2+ %β-=100
79m1Se 3.92 m 1/2- %IT=99.944 , %β-=0.056
80Se stable 0+ %Abundance=49.61
81Se 18.45 m 1/2- %β-=100
81m1Se 57.28 m 7/2+ %IT=99.948 , %β-=0.052
82Se 1.08e+20 a 0+ %Abundance=8.73, %ββ=100
83Se 22.3 m 9/2+ %β-=100
83m1Se 70.1 s 1/2- %β-=100
84Se 3.10 m 0+ %β-=100
85Se 31.7 s (5/2+) %β-=100
86Se 15.3 s 0+ %β-=100
87Se 5.29 s (5/2+) %β-=100, %β-n=0.36
88Se 1.53 s 0+ %β-=100, %β-n=0.99
89Se 0.41 s (5/2+) %β-=100, %β-n=7.8
90Se 0+
91Se 0.27 s %β-=100, %β-n=21

Bromine

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
70Br 79.1 ms %K+%β+=100
70m1Br 2.2 s %K+%β+=100
71Br 21.4 s 5/2- %K+%β+=100
72Br 78.6 s 3+ %K+%β+=100
72m1Br 10.6 s 1- %IT ~ 100, %K+%β+=?
73Br 3.4 m 1/2- %K+%β+=100
74Br 25.4 m (0-) %K+%β+=100
74m1Br 46 m 4(+) %K+%β+=100
75Br 96.7 m 3/2- %K+%β+=100
76Br 16.2 h 1- %K+%β+=100
76m1Br 1.31 s (4) + %IT > 99.4, %K+%β+ < 0.6
77Br 57.036 h 3/2- %K+%β+=100
77m1Br 4.28 m 9/2+ %IT=100
78Br 6.46 m 1+ %K+%β+=100, %β- < 0.01
78m1Br 119.2 μs (4+)
79Br stable 3/2- %Abundance=50.69
79m1Br 4.86 s 9/2+ %IT=100
80Br 17.68 m 1+ %β-=91.7 , %K+%β+=8.3
80m1Br 4.4205 h 5- %IT=100
81Br stable 3/2- %Abundance=49.31
82Br 35.30 h 5- %β-=100
82m1Br 6.13 m 2- %IT=97.6 , %β-=2.4
83Br 2.40 h 3/2- %β-=100
84Br 31.80 m 2- %β-=100
84m1Br 6.0 m 6- %β-=100
85Br 2.90 m 3/2- %β-=100
86Br 55.1 s (2- ) %β-=100
87Br 55.60 s 3/2- %β-=100, %β-n=2.52
88Br 16.34 s (1,2- ) %β-=100, %β-n=6.58
89Br 4.348 s (3/2- ,5/2- ) %β-=100, %β-n=13.8
90Br 1.91 s %β-n=25.2 , %β-=100
91Br 0.541 s %β-=100, %β-n=18.3
92Br 0.343 s (2- ) %β-=100, %β-n=33
93Br 102 ms (5/2- ) %β-=100, %β-n=10 +5-3
94Br 70 ms %β-=100, %β-n=30

Krypton

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
71Kr 64 ms %K+%β+=100, %Kp=5.2
72Kr 17.2 s 0+ %K+%β+=100
73Kr 27.0 s 5/2- %K+%β+=100, %Kp=0.68
74Kr 11.50 m 0+ %K+%β+=100
75Kr 4.3 m (5/2) + %K+%β+=100
76Kr 14.8 h 0+ %K+%β+=100
77Kr 74.4 m 5/2+ %K+%β+=100
78Kr stable 0+ %Abundance=0.35
79Kr 35.04 h 1/2- %K+%β+=100
79m1Kr 50 s 7/2+ %IT=100
80Kr stable 0+ %Abundance=2.25
81Kr 2.29e+5 a 7/2+ %K=100
81m1Kr 13.10 s 1/2- %IT=99.9975 , %K=2.5E-3
82Kr stable 0+ %Abundance=11.6
83Kr stable 9/2+ %Abundance=11.5
83m1Kr 1.83 h 1/2- %IT=100
84Kr stable 0+ %Abundance=57.0
85Kr 10.756 a 9/2+ %β-=100
85m1Kr 4.480 h 1/2- %IT=21.4 , %β-=78.6
86Kr stable 0+ %Abundance=17.3
87Kr 76.3 m 5/2+ %β-=100
88Kr 2.84 h 0+ %β-=100
89Kr 3.15 m (3/2+,5/2+) %β-=100
90Kr 32.32 s 0+ %β-=100
91Kr 8.57 s (5/2+) %β-=100
92Kr 1.840 s 0+ %β-=100, %β-n=0.033
93Kr 1.286 s (1/2+) %β-=100, %β-n=1.95
94Kr 0.20 s 0+ %β-=100, %β-n=5.7
95Kr 0.78 s 1/2 %β-=100

Rubidium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
74Rb 64.9 ms (0+) %K+%β+=100
75Rb 19.0 s (3/2- ,5/2-) %K+%β+=100
76Rb 36.5 s 1(-) %K+%β+=100
77Rb 3.77 m 3/2- %K+%β+=100
78Rb 17.66 m 0(+) %K+%β+=100
78m1Rb 5.74 m 4(-) %K+%β+=90 , %IT=10
79Rb 22.9 m 5/2+ %K+%β+=100
80Rb 34 s 1+ %K+%β+=100
81Rb 4.576 h 3/2- %K+%β+=100
81m1Rb 30.5 m 9/2+ %IT=97.6 , %K+%β+ =2.4
82Rb 1.273 m 1+ %K+%β+=100
82m1Rb 6.472 h 5- %K+%β+=100, %IT<0.33
83Rb 86.2 d 5/2- %K=100
83m1Rb 7.8 ms 9/2+ %IT=?, %K+%β+=?
84Rb 32.77 d 2- %β-=3.8 , %K+%β+=96.2
84m1Rb 20.26 m 6- %IT=100
85Rb stable 5/2- %Abundance=72.165
86Rb 18.631 d 2- %β-=99.9948 , %K=0.0052
86m1Rb 1.017 m 6- %IT=100
87Rb 4.75e10 a 3/2- %Abundance=27.835, %β-=100
88Rb 17.78 m 2- %β-=100
89Rb 15.15 m 3/2- %β-=100
90Rb 158 s 0- %β-=100
90m1Rb 258 s 3- %β-=97.4 , %IT=2.6
91Rb 58.4 s 3/2(-) %β-=100
92Rb 4.492 s 0- %β-=100, %β-n=0.0107
93Rb 5.84 s 5/2- %β-=100, %β-n=1.39
94Rb 2.702 s 3(-) %β-=100, %β-n=10.4
95Rb 377.5 ms 5/2- %β-=100, %β-n=8.73
96Rb 0.199 s 2+ %β-=100, %β-n=13.8
97Rb 169.9 ms 3/2(+) %β-=100, %β-n=25.1
98Rb 114 ms (1,0) %β-=100, %β-n=13.6 , %β-2n=0.051
98m1Rb 96 ms (4,5) %β-=100
99Rb 50.3 ms (5/2+ ) %β-=100, %β-n=20.7
100Rb 51 ms %β-=100, %β-n=6 , %β-2n=0.16
101Rb 32 ms (3/2+ ) %β-=100, %β-n=28
102Rb 37 ms %β-=100 , %β-n=18

Strontium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
75Sr 71 ms %K+%β+=100, %Kp=6.5
76Sr 8.9 s 0+ %K+%β+=100
77Sr 9.0 s 5/2+ %K+%β+=100 , %Kp < 0.25
78Sr 2.5 m 0+ %K+%β+=100
79Sr 2.25 m 3/2(-) %K+%β+=100
80Sr 106.3 m 0+ %K+%β+=100
81Sr 22.3 m 1/2- %K+%β+=100
82Sr 25.55 d 0+ %K=100
83Sr 32.41 h 7/2+ %K+%β+=100
83m1Sr 4.95 s 1/2- %IT=100
84Sr stable 0+ %Abundance=0.56
85Sr 64.84 d 9/2+ %K=100
85m1Sr 67.63 m 1/2- %IT=86.6 , %K+%β+=13.4
86Sr stable 0+ %Abundance=9.86
87Sr stable 9/2+ %Abundance=7.00
87m1Sr 2.803 h 1/2- %K=0.30 , %IT=99.70
88Sr stable 0+ %Abundance=82.58
89Sr 50.53 d 5/2+ %β-=100
90Sr 28.79 a 0+ %β-=100
91Sr 9.63 h 5/2+ %β-=100
92Sr 2.71 h 0+ %β-=100
93Sr 7.423 m 5/2+ %β-=100
94Sr 75.3 s 0+ %β-=100
95Sr 23.90 s 1/2+ %β-=100
96Sr 1.07 s 0+ %β-=100
97Sr 426 ms 1/2+ %β-=100, %β-n=0.005
98Sr 0.653 s 0+ %β-=100, %β-n=0.18
99Sr 0.269 s 3/2+ %β-=100, %β-n=0.100
100Sr 202 ms 0+ %β-=100, %β-n=0.78
101Sr 118 ms (5/2-) %β-=100, %β-n=2.37

Yttrium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
79Y 14.8 s (5/2+ ) %K+%β+=100, %Kp=?
80Y 35 s (3,4,5) %K+%β+=100
81Y 70.4 s (5/2+ ) %K+%β+=100
82Y 9.5 s 1+ %K+%β+=100
83Y 7.08 m (9/2+ ) %K+%β+=100
83m1Y 2.85 m (3/2-) %K+%β+=60 , %IT=40
84Y 4.6 s 1+ %K+%β+=100
84m1Y 39.5 m (5-) %K+%β+=100
85Y 2.68 h (1/2) - %K+%β+=100
85m1Y 4.86 h 9/2+ %K+%β+=100, %IT < 2E-3
86Y 14.74 h 4- %K+%β+=100
86m1Y 48 m (8+ ) %IT=99.31 , %K+%β+=0.69
87Y 79.8 h 1/2- %K+%β+=100
87m1Y 13.37 h 9/2+ %IT=98.43 , %K+%β+=1.57
88Y 106.65 d 4- %K+%β+=100
88m1Y 13.9 ms (8) + %IT=100
89Y stable 1/2- %Abundance=100
89m1Y 16.06 s 9/2+ %IT=100
90Y 64.00 h 2- %β-=100
90m1Y 3.19 h 7+ %IT=99.9982 , %β-=0.0018
91Y 58.51 d 1/2- %β-=100
91m1Y 49.71 m 9/2+ %IT=100, %β-<1.5
92Y 3.54 h 2- %β-=100
93Y 10.18 h 1/2- %β-=100
93m1Y 0.82 s 7/2+ %IT=100
94Y 18.7 m 2- %β-=100
95Y 10.3 m 1/2- %β-=100
96Y 5.34 s 0- %β-=100
96m1Y 9.6 s (8+ ) %β- ~ 100
97Y 3.75 s (1/2-) %β-=100, %β-n=0.055

Zirconium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
81Zr 15 s %K+%β+=100, %Kp=?
82Zr 32 s 0+ %K+%β+=100
83Zr 44 s (1/2-) %K+%β+=100, %Kp=?
84Zr 25.9 m 0+ %K+%β+=100
85Zr 7.86 m 7/2+ %K+%β+=100
85m1Zr 10.9 s (1/2-) %K+%β+ > 8, %IT < 92
86Zr 16.5 h 0+ %K+%β+=100
87Zr 1.68 h (9/2) + %K+%β+=100
87m1Zr 14.0 s (1/2) - %IT=100
88Zr 83.4 d 0+ %K=100
89Zr 78.41 h 9/2+ %K+%β+=100
89m1Zr 4.18 m 1/2- %K+%β+=6.23 , %IT=93.77
90Zr stable 0+ %Abundance=51.45
90m1Zr 809.2 ms 5- %IT=100
91Zr stable 5/2+ %Abundance=11.22
92Zr stable 0+ %Abundance=17.15
93Zr 1.53e+6 a 5/2+ %β-=100
94Zr stable 0+ %Abundance=17.38
95Zr 64.02 d 5/2+ %β-=100
96Zr 3.8e19 a 0+ %Abundance=2.80, %β- β-=100
97Zr 16.91 h 1/2+ %β-=100
98Zr 30.7 s 0+ %β-=100
99Zr 2.1 s (1/2+ ) %β-=100
100Zr 7.1 s 0+ %β-=100
101Zr 2.3 s (3/2+ ) %β-=100
102Zr 2.9 s 0+ %β-=100
103Zr 1.3 s (5/2-) %β-=100
104Zr 1.2 s 0+ %β-=100

Niobium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
83Nb 4.1 s (5/2+ ) %K+%β+=100
84Nb 12 s 3+ %K+%β+=100, %Kp=?
85Nb 20.9 s (9/2+ ) %K+%β+=100
86Nb 88 s (5+ ) %K+%β+=100
86m1Nb 56 s %K+%β+=100
87Nb 2.6 m (9/2+ ) %K+%β+=100
87m1Nb 3.7 m (1/2-) %K+%β+=100
88Nb 14.5 m (8+ ) %K+%β+=100
88m1Nb 7.8 m (4-) %K+%β+=100
89Nb 1.9 h (9/2+ ) %K+%β+=100
89m1Nb 1.18 h (1/2) - %K+%β+=100
90Nb 14.60 h 8+ %K+%β+=100
90m1Nb 18.81 s 4- %IT=100
90m2Nb 6.19 ms 1+ %IT=100
91Nb 680 a 9/2+ %K+%β+=100
91m1Nb 60.86 d 1/2- %IT=93 , %K+%β+=7
92Nb 3.47e+7 a (7) + %K+%β+=100, %β- < 0.05
92m1Nb 10.15 d (2) + %K+%β+=100
93Nb stable 9/2+ %Abundance=100
93m1Nb 16.13 a 1/2- %IT=100
94Nb 2.03e+4 a (6) + %β-=100
94m1Nb 6.263 m 3+ %IT=99.50 , %β-=0.50
95Nb 34.975 d 9/2+ %β-=100
95m1Nb 86.6 h 1/2- %β-=5.6 , %IT=94.4
96Nb 23.35 h 6+ %β-=100
97Nb 72.1 m 9/2+ %β-=100
97m1Nb 52.7 s 1/2- %IT=100
98Nb 2.86 s 1+ %β-=100
98m1Nb 51.3 m (5+ ) %β-=99.9 , %IT < 0.2
99Nb 15.0 s 9/2+ %β-=100

Molybdenium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
86Mo 19.6 s 0+ %K+%β+=100
87Mo 13.4 s (7/2+ ) %K+%β+=100, %β+P=?
88Mo 8.0 m 0+ %K+%β+=100
89Mo 2.04 m (9/2+ ) %K+%β+=100
89m1Mo 190 ms (1/2-) %IT=100
90Mo 5.56 h 0+ %K+%β+=100
91Mo 15.49 m 9/2+ %K+%β+=100
91m1Mo 65.0 s 1/2- %K+%β+=49.9 , %IT=50.1
92Mo stable 0+ %Abundance=14.84
93Mo 4.0e+3 a 5/2+ %K=100
93m1Mo 6.85 h 21/2+ %IT=99.88 , %K+%β+=0.12
94Mo stable 0+ %Abundance=9.25
95Mo stable 5/2+ %Abundance=15.92
96Mo stable 0+ %Abundance=16.68
97Mo stable 5/2+ %Abundance=9.55
98Mo stable 0+ %Abundance=24.13
99Mo 65.94 h 1/2+ %β-=100
100Mo 1.00e+19 a 0+ %Abundance=9.63, %ββ=100
101Mo 14.61 m 1/2+ %β-=100
102Mo 11.3 m 0+ %β-=100
103Mo 67.5 s (3/2+ ) %β-=100
104Mo 60 s 0+ %β-=100
105Mo 35.6 s (5/2-) %β-=100
106Mo 8.4 s 0+ %β-=100
107Mo 3.5 s %β-=100
108Mo 1.09 s 0+ %β-=100
109Mo 0.53 s %β-=100
110Mo 0.30 s 0+ %β-=100

Technetium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
88Tc 6.4 s (6,7,8) %K+%β+=100
88m1Tc 5.8 s (2,3) %K+%β+=100
89Tc 12.8 s (9/2+ ) %K+%β+=100
89m1Tc 12.9 s (1/2-) %K+%β+=100
90Tc 49.2 s (8+ ) %K+%β+=100
90m1Tc 8.7 s 1+ %K+%β+=100
91Tc 3.14 m (9/2) + %K+%β+=100
91m1Tc 3.3 m (1/2) - %K+%β+=100, %IT<1
92Tc 4.23 m (8) + %K+%β+=100
93Tc 2.75 h 9/2+ %K+%β+=100
93m1Tc 43.5 m 1/2- %IT=76.6 , %K+%β+=23.4
94Tc 293 m 7+ %K+%β+=100
94m1Tc 52.0 m (2) + %K+%β+=100, %IT<0.1
95Tc 20.0 h 9/2+ %K+%β+=100
95m1Tc 61 d 1/2- %K+%β+=96.12 , %IT=3.88
96Tc 4.28 d 7+ %K+%β+=100
96m1Tc 51.5 m 4+ %IT=98.0 , %K+%β+=2.0
97Tc 2.6e6 a 9/2+ %K=100
97m1Tc 90.1 d 1/2- %IT=100, %K<0.34
98Tc 4.2e+6 a (6) + %β-=100
99Tc 2.111e+5 a 9/2+ %β-=100
99m1Tc 6.01 h 1/2- %IT=99.9963 , %β-=0.0037
100Tc 15.8 s 1+ %β-=99.9982 , %K=0.0018
101Tc 14.22 m 9/2+ %β-=100
102Tc 5.28 s 1+ %β-=100
102m1Tc 4.35 m (4,5) %β-=98 , %IT=2
103Tc 54.2 s 5/2+ %β-=100
104Tc 18.3 m (3+ ) %β-=100
105Tc 7.6 m (3/2-) %β-=100


Ruthenium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
90Ru 11 s 0+ %K+%β+=100
91Ru 9 s (9/2+ ) %K+%β+=100
91m1Ru 7.6 s (1/2-) %K+%β+=?, %Kp=?, %IT=?
92Ru 3.65 m 0+ %K+%β+=100
93Ru 59.7 s (9/2) + %K+%β+=100
93m1Ru 10.8 s (1/2) - %IT=22.0 , %K+%β+=78.0 , %Kp=0.027
94Ru 51.8 m 0+ %K+%β+=100
95Ru 1.643 h 5/2+ %K+%β+=100
96Ru stable 0+ %Abundance=5.52
97Ru 2.9 d 5/2+ %K=100
98Ru stable 0+ %Abundance=1.88
99Ru stable 5/2+ %Abundance=12.7
100Ru stable 0+ %Abundance=12.6
101Ru stable 5/2+ %Abundance=17.0
102Ru stable 0+ %Abundance=31.6
103Ru 39.26 d 3/2+ %β-=100
103m1Ru 1.69 ms 11/2- %IT=100
104Ru stable 0+ %Abundance=18.7
105Ru 4.44 h 3/2+ %β-=100
106Ru 373.59 d 0+ %β-=100
107Ru 3.75 m (5/2) + %β-=100
108Ru 4.55 m 0+ %β-=100
109Ru 34.5 s (5/2+ ) %β-=100
110Ru 14.6 s 0+ %β-=100
111Ru 2.12 s %β-=100
112Ru 1.75 s 0+ %β-=100
113Ru 0.80 s %β-=100
114Ru 0.53 s 0+ %β-=100
115Ru 0.40 s %β-=100, %β-n=?

Rhodium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
94Rh 70.6 s (3+ ) %K+%β+=100, %Kp=1.8
94m1Rh 25.8 s (8+ ) %K+%β+=100
95Rh 5.02 m (9/2) + %K+%β+=100
95m1Rh 1.96 m (1/2) - %K+%β+=12 , %IT=88
96Rh 9.90 m 6+ %K+%β+=100
96m1Rh 1.51 m 3+ %IT=60 , %K+%β+=40
97Rh 30.7 m (9/2) + %K+%β+=100
97m1Rh 46.2 m (1/2) - %K+%β+=94.4 , %IT=5.6
98Rh 8.7 m (2) + %K+%β+=100
98m1Rh 3.5 m (5+ ) %K+%β+>0, %IT=?
99Rh 16.1 d 1/2- %K+%β+=100
99m1Rh 4.7 h 9/2+ %K+%β+ > 99.84 , %IT<0.16
100Rh 20.8 h 1- %K+%β+=100
100m1Rh 4.6 m (5+ ) %IT ~ 98.3, %K+%β+ ~ 1.7
101Rh 3.3 a 1/2- %K=100
101m1Rh 4.34 d 9/2+ %K=92.80 , %IT=7.20
102Rh 207 d (1- ,2-) %β-=20 , %K+%β+=80
102m1Rh 2.9 a 6(+) %K+%β+=99.767 , %IT=0.233
103Rh stable 1/2- %Abundance=100
103m1Rh 56.12 m 7/2+ %IT=100
104Rh 42.3 s 1+ %β-= 99.55 , %K+%β+= 0.45
104m1Rh 4.34 m 5+ %IT=99.87 , %β-=0.13
105Rh 35.36 h 7/2+ %β-=100
105m1Rh 45 s 1/2- %IT=100
106Rh 29.80 s 1+ %β-=100
106m1Rh 131 m (6) + %β-=100
107Rh 21.7 m 7/2+ %β-=100
108Rh 16.8 s 1+ %β-=100
108m1Rh 6.0 m (5+ ) %β-=100
109Rh 80 s 7/2+ %β-=100

Palladium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
96Pd 122 s 0+ %K+%β+=100
97Pd 3.10 m (5/2+ ) %K+%β+=100
98Pd 17.7 m 0+ %K+%β+=100
99Pd 21.4 m (5/2) + %K+%β+=100
100Pd 3.63 d 0+ %K=100
101Pd 8.47 h 5/2+ %K+%β+=100
102Pd stable 0+ %Abundance=1.02
103Pd 16.991 d 5/2+ %K=100
104Pd stable 0+ %Abundance=11.14
105Pd stable 5/2+ %Abundance=22.33
106Pd stable 0+ %Abundance=27.33
107Pd 6.5e+6 a 5/2+ %β-=100
107m1Pd 21.3 s 11/2- %IT=100
108Pd stable 0+ %Abundance=26.46
109Pd 13.7012 h 5/2+ %β-=100
109m1Pd 4.696 m 11/2- %IT=100
110Pd stable 0+ %Abundance=11.72
111Pd 23.4 m 5/2+ %β-=100
111m1Pd 5.5 h 11/2- %IT=73 , %β-=27
112Pd 21.03 h 0+ %β-=100
113Pd 93 s (5/2+ ) %β-=100
113m1Pd 100 s %β-=?
113m2Pd 0.3 s (9/2-) %IT=100
114Pd 2.42 m 0+ %β-=100
115Pd 25 s (5/2+ ) %β-=100
115m1Pd 50 s (11/2-) %β-=92.0 , %IT=8.0
116Pd 11.8 s 0+ %β-=100
117Pd 4.3 s (5/2+ ) %β-=100
117m1Pd 19.1 ms (11/2-) %IT=100
118Pd 1.9 s 0+ %β-=100
119Pd 0.92 s %β-=100
120Pd 0.5 s 0+ %β-=100

Silver

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
94Ag 10 ms 0+ %K+%β+=100
94m1Ag 0.42 s (9+ ) %K+%β+=100, %Kp=?
95Ag 2.0 s %K+%β+=100, %Kp=?
96Ag 5.1 s (8+ , 9+ ) %K+%β+=100, %Kp=8.0
97Ag 19 s (9/2+ ) %K+%β+=100
98Ag 46.7 s (5+ ) %K+%β+=100
99Ag 124 s (9/2) + %K+%β+=100
99m1Ag 10.5 s (1/2-) %IT=100
100Ag 2.01 m (5) + %K+%β+=100
100m1Ag 2.24 m (2) + %K+%β+=?, %IT=?
101Ag 11.1 m 9/2+ %K+%β+=100
101m1Ag 3.10 s (1/2) - %IT=100
102Ag 12.9 m 5+ %K+%β+=100
102m1Ag 7.7 m 2+ %IT=49 , %K+%β+=51
103Ag 65.7 m 7/2+ %K+%β+=100
103m1Ag 5.7 s 1/2- %IT=100
104Ag 69.2 m 5+ %K+%β+=100
104m1Ag 33.5 m 2+ %K+%β+=100, %IT < 0.07
105Ag 41.29 d 1/2- %K+%β+=100
105m1Ag 7.23 m 7/2+ %IT=99.66 , %K+%β+=0.34
106Ag 23.96 m 1+ %K+β+=99.5 , %β- < 1
106m1Ag 8.28 d 6+ %K+β+=100
107Ag stable 1/2- %Abundance=51.839
107m1Ag 44.3 s 7/2+ %IT=100
108Ag 2.37 m 1+ %β-=97.15 , %K+%β+=2.85
108m1Ag 418 a 6+ %IT=8.7 , %K+%β+=91.3
109Ag stable 1/2- %Abundance=48.161
109m1Ag 39.6 s 7/2+ %IT=100
110Ag 24.6 s 1+ %β-=99.70 , %K=0.30
110m1Ag 249.79 d 6+ %β-=98.64 , %IT=1.36
111Ag 7.45 d 1/2- %β-=100
111m1Ag 64.8 s 7/2+ %IT=99.3, %β-=0.7
112Ag 3.130 h 2(-) %β-=100
113Ag 5.37 h 1/2- %β-=100
113m1Ag 68.7 s 7/2+ %IT= 64 , %β-=36
114Ag 4.6 s 1+ %β-=100
114m1Ag 1.50 ms (LE 6+ ) %IT=100
115Ag 20.0 m 1/2- %β-=100
115m1Ag 18.0 s 7/2+ %β-=79.0 , %IT=21.0
116Ag 2.68 m (2) - %β-=100
116m1Ag 8.6 s (5+ ) %IT=6.0 , %β-=94.0
117Ag 72.8 s (1/2-) %β-=100
117m1Ag 5.34 s (7/2+ ) %β-=94.0 , %IT=6.0
118Ag 3.76 s (1) - %β-=100
118m1Ag 2.0 s (4) + %β-=59, %IT=41
119Ag 2.1 s (7/2+ ) %β-=100
119m1Ag 6.0 s (1/2-) %β-=100
120Ag 1.23 s (3+ ) %β-=100
120m1Ag 0.32 s (6-) %β- ~ 63, %IT ~ 37
121Ag 0.78 s (7/2+ ) %β-=100 , %β-n=0.080
122Ag 0.48 s (3+ ) %β-=100, %β-n=?
122m1Ag 1.5 s %β-=100
123Ag 0.309 s (7/2+ ) %β-=100, %β-n=55
124Ag 0.172 s %β-=100 , %β-n > 0.1
125Ag 166 ms %β-=100, %β-n=?
126Ag 107 ms %β-=100
127Ag 109 ms %β-=100
128Ag 58 ms %β-=100, %β-n=?

Cadmium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
97Cd 3 s %K+%β+=100, %Kp=?
98Cd 9.2 s 0+ %K+%β+=100
99Cd 16 s (5/2+ ) %K+%β+=100, %Kp=0.17 +11-5, %Kα<1E-4
100Cd 49.1 s 0+ %K+%β+=100
101Cd 1.36 m (5/2+ ) %K+%β+=100
102Cd 5.5 m 0+ %K+%β+=100
103Cd 7.3 m (5/2+ ) %K+%β+=100
104Cd 57.7 m 0+ %K+%β+=100
105Cd 55.5 m 5/2+ %K+%β+ =100
106Cd stable 0+ %Abundance=1.25
107Cd 6.50 h 5/2+ %K+%β+=100
108Cd stable 0+ %Abundance=0.89
109Cd 462.6 d 5/2+ %K=100
110Cd stable 0+ %Abundance=12.49
111Cd stable 1/2+ %Abundance=12.80
111m1Cd 48.54 m 11/2- %IT=100
112Cd stable 0+ %Abundance=24.13
113Cd 7.7e+15 a 1/2+ %Abundance=12.22, %β-=100
113m1Cd 14.1 a 11/2- %β-=99.86, %IT=0.14
114Cd stable 0+ %Abundance=28.73
115Cd 53.46 h 1/2+ %β-=100
115m1Cd 44.6 d 11/2- %β-=100
116Cd stable 0+ %Abundance=7.49
117Cd 2.49 h 1/2+ %β-=100
117m1Cd 3.36 h (11/2) - %β-=100
118Cd 50.3 m 0+ %β-=100
119Cd 2.69 m 3/2+ %β-=100
119m1Cd 2.20 m (11/2-) %β-=100
120Cd 50.80 s 0+ %β-=100
121Cd 13.5 s (3/2+ ) %β-=100
121m1Cd 8.3 s (11/2-) %β-=100
122Cd 5.24 s 0+ %β-=100
123Cd 2.10 s (3/2) + %β-=100
123m1Cd 1.82 s (11/2-) %β-=100
124Cd 1.25 s 0+ %β-=100
125Cd 0.65 s (3/2+ ) %β-=100
125m1Cd 0.57 s (11/2-) %β-=100
126Cd 0.506 s 0+ %β-=100
127Cd 0.37 s (3/2+ ) %β-=100
128Cd 0.34 s 0+ %β-=100
129Cd 0.27 s (3/2+ ) %β-=100
130Cd 0.20 s 0+ %β-=100 , %β-n ~ 4

Indium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
100In 7.0 s %K+%β+=100, %Kp>3.9
101In 15.1 s %K+%β+ ~ 100, %Kp=?
102In 22 s (6+ ) %K+%β+=100, %Kp=0.0093
103In 65 s (9/2) + %K+%β+=100
103m1In 34 s (1/2-) %K+%β+=67, %IT=33
104In 1.80 m (6+ ) %K+%β+=100
104m1In 15.7 s (3+ ) %IT=80, %K+%β+=20
105In 5.07 m (9/2) + %K+%β+=100
105m1In 48 s (1/2) - %IT=100
106In 6.2 m 7+ %K+%β+=100
106m1In 5.2 m (3+ ) %K+%β+=100
107In 32.4 m 9/2+ %K+%β+=100
107m1In 50.4 s 1/2- %IT=100
108In 58.0 m 7+ %K+%β+=100
108m1In 39.6 m 2+ %K+%β+=100
109In 4.2 h 9/2+ %K+%β+=100
109m1In 1.34 m 1/2- %IT=100
109m2In 0.209 s (19/2+ ) %IT=100
110In 4.9 h 7+ %K+%β+=100
110m1In 69.1 m 2+ %K+%β+=100
111In 2.8047 d 9/2+ %K=100
111m1In 7.7 m 1/2- %IT=100
112In 14.97 m 1+ %β-=44 , %K+%β+=56
112m1In 20.56 m 4+ %IT=100
113In stable 9/2+ %Abundance=4.3
113m1In 1.6582 h 1/2- %IT=100
114In 71.9 s 1+ %β-=99.50 , %K+%β+=0.50
114m1In 49.51 d 5+ %IT=96.75 , %K+%β+=3.25
114m2In 43.1 ms 8- %IT=100
115In 4.41e+14 a 9/2+ %Abundance=95.7, %β-=100
115m1In 4.486 h 1/2- %IT=95.0 , %β-=5.0
116In 14.10 s 1+ %β- > 99.94 , %K < 0.06
116m1In 54.29 m 5+ %β-=100
116m2In 2.18 s 8- %IT=100
117In 43.2 m 9/2+ %β-=100
117m1In 116.2 m 1/2- %β-=52.9 , %IT=47.1
118In 5.0 s 1+ %β-=100
118m1In 4.45 m 5+ %β-=100
118m2In 8.5 s 8- %β-=1.4 , %IT=98.6
119In 2.4 m 9/2+ %β-=100
119m1In 18.0 m 1/2- %β-=94.4 , %IT=5.6
120In 3.08 s 1+ %β-=100
120m1In 46.2 s (3,4,5) + %β-=100
120m2In 47.3 s (8-) %β-=100
121In 23.1 s 9/2+ %β-=100
121m1In 3.88 m 1/2- %β-=98.8 , %IT=1.2
122In 1.5 s 1+ %β-=100
122m1In 10.3 s 5+ %β-=100
122m2In 10.8 s 8- %β-=100
123In 5.98 s 9/2+ %β-=100
123m1In 47.8 s 1/2- %β-=100
124In 3.11 s 3+ %β-=100
124m1In 3.7 s (8-) %β-=100
125In 2.36 s 9/2(+) %β-=100
125m1In 12.2 s 1/2(-) %β-=100
126In 1.60 s 3(+) %β-=100
126m1In 1.64 s 7- ,8- ,9- %β-=100
127In 1.09 s (9/2+ ) %β-=100, %β-n < 0.03
127m1In 3.67 s (1/2-) %β-=100, %β-n=0.69
128In 0.84 s (3+ ) %β-=100, %β-n < 0.04
128m1In 0.72 s (8-) %β-=100, %β-n < 0.04
129In 0.61 s (9/2+ ) %β-=100, %β-n=0.25
129m1In 1.23 s (1/2-) %β- > 99.7, %β-n=2.5 , %IT < 0.3
130In 0.32 s 1(-) %β-=100 , %β-n=0.90
130m1In 0.55 s (10- ) %β-=100 , %β-n < 1.67
130m2In 0.55 s (5+ ) %β-=100 , %β-n < 1.67
131In 0.282 s (9/2+ ) %β-=100, %β-n < 2.2
131m1In 0.35 s (1/2-) %β-=100, %β-n < 2.2 , %IT < 0.04
131m2In 0.32 s (21/2+ ) %β-=100, %β-n < 2.2
132In 0.201 s (7-) %β-=100 , %β-n=6.2
133In 180 ms (9/2+ ) %β-=100, %β-n=85
134In 138 ms %β-=100, %β-n=65
Isotope Half-life Spin Parity Mode(s) or Abundance
100Sn 0.94 s 0+ %K+%β+=100, %Kp < 17
101Sn 3 s %K+%β+=100, %Kp=?
102Sn 4.5 s 0+ %K+%β+=100
103Sn 7 s %K+%β+=100
104Sn 20.8 s 0+ %K+%β+=100
105Sn 31 s %K+%β+=100, %β+P=?
106Sn 115 s 0+ %K+%β+=100
107Sn 2.90 m (5/2+ ) %K+%β+=100
108Sn 10.30 m 0+ %K+%β+=100
109Sn 18.0 m 5/2(+) %K+%β+=100
110Sn 4.11 h 0+ %K=100
111Sn 35.3 m 7/2+ %K+%β+=100
112Sn stable 0+ %Abundance=0.97
113Sn 115.09 d 1/2+ %K+%β+=100
113m1Sn 21.4 m 7/2+ %IT=91.1 , %K+%β+=8.9
114Sn stable 0+ %Abundance=0.65
115Sn stable 1/2+ %Abundance=0.34
116Sn stable 0+ %Abundance=14.53
117Sn stable 1/2+ %Abundance=7.68
117m1Sn 13.60 d 11/2- %IT=100
118Sn stable 0+ %Abundance=24.23
119Sn stable 1/2+ %Abundance=8.59
119m1Sn 293.1 d 11/2- %IT=100
120Sn stable 0+ %Abundance=32.59
121Sn 27.06 h 3/2+ %β-=100
121m1Sn 55 a 11/2- %IT=77.6 , %β-=22.4
122Sn stable 0+ %Abundance=4.63
123Sn 129.2 d 11/2- %β-=100
123m1Sn 40.06 m 3/2+ %β-=100
124Sn stable 0+ %Abundance=5.79
125Sn 9.64 d 11/2- %β-=100
125m1Sn 9.52 m 3/2+ %β-=100
126Sn 1e+5 a 0+ %β-=100
127Sn 2.10 h (11/2-) %β-=100
127m1Sn 4.13 m (3/2+ ) %β-=100
128Sn 59.07 m 0+ %β-=100
128m1Sn 6.5 s (7-) %IT=100
129Sn 2.23 m (3/2+ ) %β-=100
129m1Sn 6.9 m (11/2-) %β-=100, %IT ~ 2E-4
130Sn 3.72 m 0+ %β-=100
130m1Sn 1.7 m (7-) %β-=100
131Sn 56.0 s (3/2+ ) %β-=100
131m1Sn 58.4 s (11/2-) %β-=100, %IT < 0.009
132Sn 39.7 s 0+ %β-=100
133Sn 1.45 s (7/2-) %β-=100, %β-n=0.08
134Sn 1.12 s 0+ %β-=100, %β-n=17

Antimony

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
108Sb 7.4 s (4+ ) %K+%β+=100, %Kp=?
109Sb 17.0 s (5/2+ ) %K+%β+=100
110Sb 23.0 s 3+ %K+%β+=100
111Sb 75 s (5/2+ ) %K+%β+=100
112Sb 51.4 s 3+ %K+%β+=100
113Sb 6.67 m 5/2+ %K+%β+=100
114Sb 3.49 m 3+ %K+%β+=100
115Sb 32.1 m 5/2+ %K+%β+=100
116Sb 15.8 m 3+ %K+%β+=100
116m1Sb 60.3 m 8- %K+%β+=100
117Sb 2.80 h 5/2+ %K+%β+=100
118Sb 3.6 m 1+ %K+%β+=100
118m1Sb 5.00 h 8- %K+%β+=100
119Sb 38.19 h 5/2+ %K=100
119m1Sb 0.85 s (25/2+ ) %IT=100
120Sb 15.89 m 1+ %K+%β+=100
120m1Sb 5.76 d 8- %K+%β+=100
121Sb stable 5/2+ %Abundance=57.36
122Sb 2.7238 d 2- %β-=97.59 , %K+%β+=2.41
122m1Sb 4.191 m (8) - %IT=100
123Sb stable 7/2+ %Abundance=42.64
124Sb 60.20 d 3- %β-=100
124m1Sb 93 s 5+ %IT=75 , %β-=25
124m2Sb 20.2 m (8) - %IT=100
125Sb 2.7582 a 7/2+ %β-=100
126Sb 12.46 d (8) - %β-=100
126m1Sb 19.15 m (5) + %β-=86 , %IT=14
126m2Sb 11 s (3) - %IT=100
127Sb 3.85 d 7/2+ %β-=100
128Sb 9.01 h 8- %β-=100
128m1Sb 10.4 m 5+ %β-=96.4 , %IT=3.6
129Sb 4.40 h 7/2+ %β-=100
129m1Sb 17.7 m (19/2-) %β-=85, %IT=15
130Sb 39.5 m (8-) %β-=100
130m1Sb 6.3 m (5) + %β-=100
131Sb 23.03 m (7/2+ ) %β-=100
132Sb 2.79 m (4+ ) %β-=100
132m1Sb 4.10 m (8-) %β-=100
133Sb 2.5 m (7/2+ ) %β-=100
134Sb 0.78 s (0- ) %β-=100
134m1Sb 10.23 s (7-) %β-=100, %β-n=0.091
135Sb 1.71 s (7/2+ ) %β-=100 , %β-n=16.4
136Sb 0.82 s %β-=100, %β-n=24.0, %β-2n=?

Tellurium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
106Te 60 μs 0+ %α=100
107Te 3.1 ms %α > 70, %K+%β+ < 30
108Te 2.1 s 0+ %K+%β+=51 , %α=49 , %β+P=2.4
109Te 4.6 s %K+%β+=96.1 , %α=3.9 , %Kp=?
110Te 18.6 s 0+ %K+%β+ ~ 100, %α ~ 0.003
111Te 19.3 s (5/2+ ) %K+%β+=100, %Kp=?
112Te 2.0 m 0+ %K+%β+=100
113Te 1.7 m (7/2+ ) %K+%β+=100
114Te 15.2 m 0+ %K+%β+=100
115Te 5.8 m 7/2+ %K+%β+=100
115m1Te 6.7 m (1/2) + %K+%β+ < 100, %IT=?
116Te 2.49 h 0+ %K+%β+=100
117Te 62 m 1/2+ %K+%β+=100
117m1Te 103 ms 11/2- %IT=100
118Te 6.00 d 0+ %K=100
119Te 16.03 h 1/2+ %K+%β+=100
119m1Te 4.70 d 11/2- %K+%β+=100, %IT < 0.008
120Te stable 0+ %Abundance=0.096
121Te 16.78 d 1/2+ %K+%β+=100
121m1Te 154 d 11/2- %IT=88.6 , %K+%β+=11.4
122Te stable 0+ %Abundance=2.603
123Te 1e+13 a 1/2+ %Abundance=0.908, %K=100
123m1Te 119.7 d 11/2- %IT=100
124Te stable 0+ %Abundance=4.816
125Te stable 1/2+ %Abundance=7.139
125m1Te 57.40 d 11/2- %IT=100
126Te stable 0+ %Abundance=18.95
127Te 9.35 h 3/2+ %β-=100
127m1Te 109 d 11/2- %IT=97.6 , %β-=2.4
128Te 2.2e24 a 0+ %Abundance=31.69, %ββ=100
129Te 69.6 m 3/2+ %β-=100
129m1Te 33.6 d 11/2- %IT=63 , %β-=37
130Te 7.9e20 a 0+ %Abundance=33.80, %β- β -=100
131Te 25.0 m 3/2+ %β-=100
131m1Te 30 h 11/2- %β-=77.8 , %IT=22.2
132Te 3.204 d 0+ %β-=100
133Te 12.5 m (3/2+ ) %β-=100
133m1Te 55.4 m (11/2-) %IT=17.5 , %β-=82.5
134Te 41.8 m 0+ %β-=100
135Te 19.0 s (7/2-) %β-=100
136Te 17.5 s 0+ %β-=100, %β-n=1.1
137Te 2.49 s (7/2-) %β-=100, %β-n=2.69
138Te 1.4 s 0+ %β-=100, %β-n=6.3

Iodine

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
108I 36 ms (1) %α=91 , %p < 1
109I 100 μs %p ~ 100
110I 0.65 s %K+%β+=83 , %α=17 , %Kp=11 , %Kα=1.1
111I 2.5 s (5/2+ ) %K+%β+=99.9, %α ~ 0.1
112I 3.42 s %K+%β+=100, %α ~ 0.0012
113I 6.6 s (5/2+ ) %K+%β+=100, %Kα=?, %α =3.310E-7
114I 2.1 s 1+ %K+%β+= 100, %Kp=?
114m1I 6.2 s (7) %K+%β+=?, %IT=?
115I 1.3 m (5/2+ ) %K+%β+=100
116I 2.91 s 1+ %K+%β+=100
116m1I 3.27 μs (7-)
117I 2.22 m (5/2) + %K+%β+=100
118I 13.7 m 2- %K+%β+=100
118m1I 8.5 m (7-) %K+%β+<100, %IT>0
119I 19.1 m 5/2+ %K+%β+=100
120I 81.0 m 2- %K+%β+=100
120m1I 53 m 4 to 8 %K+%β+=100
121I 2.12 h 5/2+ %K+%β+=100
122I 3.63 m 1+ %K+%β+=100
122m1I 80 μs
123I 13.27 h 5/2+ %K+%β+=100
124I 4.1760 d 2- %K+%β+=100
125I 59.408 d 5/2+ %K=100
126I 13.11 d 2- %K+%β+=56.3 , %β-=43.7
127I stable 5/2+ %Abundance=100
128I 24.99 m 1+ %β-=93.1 , %K+%β+=6.9
129I 1.57e7 a 7/2+ %β-=100
130I 12.36 h 5+ %β-=100
130m1I 9.0 m 2+ %IT=84 , %β-=16
131I 8.02070 d 7/2+ %β-=100
132I 2.295 h 4+ %β-=100
132m1I 1.387 h (8-) %IT=86 , %β-=14
133I 20.8 h 7/2+ %β-=100
133m1I 9 s (19/2-) %IT=100
134I 52.5 m (4) + %β-=100
134m1I 3.60 m (8) - %IT=97.7 , %β-=2.3
135I 6.57 h 7/2+ %β-=100
136I 83.4 s (1-) %β-=100
136m1I 46.9 s (6-) %β-=100
137I 24.5 s (7/2+ ) %β-=100, %β-n=6.97
138I 6.49 s (2-) %β-=100, %β-n=5.5
139I 2.29 s (7/2+ ) %β-=100, %β-n=9.9
140I 0.86 s (4) %β-=100 , %β-n=9.3
141I 0.43 s %β-=100, %β-n=21.2

Xenon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
110Xe 0.60 μs 0+ %K+β+=?, %α=?
111Xe 0.74 s %K+%β+=?, %α=?
112Xe 2.7 s 0+ %K+%β+=99.2, %α=0.8 +11- 5
113Xe 2.74 s %K+%β+ ~ 100, %α ~ 0.011, %Kp=7 , %Kα ~ 0.007
114Xe 10.0 s 0+ %K+%β+=100
115Xe 18 s (5/2+ ) %K+%β+=100, %Kp=0.34 , %Kα=0.0003
116Xe 59 s 0+ %K+%β+=100
117Xe 61 s 5/2(+) %K+%β+=100, %Kp=0.0029
118Xe 3.8 m 0+ %K+%β+=100
119Xe 5.8 m (5/2+ ) %K+%β+=100
120Xe 40 m 0+ %K+%β+=100
121Xe 40.1 m 5/2(+) %K+%β+=100
122Xe 20.1 h 0+ %K=100
123Xe 2.08 h (1/2) + %K+%β+=100
124Xe 1.6e+14 a 0+ %Abundance=0.10, %KEC=100
125Xe 16.9 h (1/2) + %K+%β+=100
125m1Xe 57 s (9/2) - %IT=100
126Xe stable 0+ %Abundance=0.09
127Xe 36.4 d 1/2+ %K=100
127m1Xe 69.2 s 9/2- %IT=100
128Xe stable 0+ %Abundance=1.91
129Xe stable 1/2+ %Abundance=26.4
129m1Xe 8.88 d 11/2- %IT=100
130Xe stable 0+ %Abundance=4.1
131Xe stable 3/2+ %Abundance=21.2
131m1Xe 11.84 d 11/2- %IT=100
132Xe stable 0+ %Abundance=26.9
132m1Xe 8.39 ms (10+) %IT=100
133Xe 5.243 d 3/2+ %β-=100
133m1Xe 2.19 d 11/2- %IT=100
134Xe stable 0+ %Abundance=10.4
134m1Xe 290 ms 7- %IT=100
135Xe 9.14 h 3/2+ %β-=100
135m1Xe 15.29 m 11/2- %IT=99.996 , %β-=0.004
136Xe 2.36e21 a 0+ %Abundance=8.9
137Xe 3.818 m 7/2- %β-=100
138Xe 14.08 m 0+ %β-=100
139Xe 39.68 s 3/2- %β-=100
140Xe 13.60 s 0+ %β-=100
141Xe 1.73 s 5/2(-) %β-=100, %β-n=0.044
142Xe 1.22 s 0+ %β-=100, %β-n=0.406
143Xe 0.30 s 5/2- %β-=100
144Xe 1.15 s 0+ %β-=100
145Xe 0.9 s %β-=100, %β-n=?
146Xe 0+ %β-=100

Caesium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
113Cs 17 μs (5/2+ ) %p ~ 100, %K+%β+ ~ 0.03
114Cs 0.57 s (1+ ) %K+%β+ ~ 100, %α=0.018 , %Kp=7 , %Kα=0.16
115Cs 1.4 s %K+%β+=100, %Kp ~ 0.07
116Cs 3.84 s >4+ %K+%β+=100, %Kp=0.44 , %Kα=0.08
116m1Cs 0.70 s (1+ ) %K+%β+=100, %Kp=0.28 , %Kα=0.049
117Cs 8.4 s (9/2+ ) %K+%β+=100
117m1Cs 6.5 s (3/2+ ) %K+%β+=100
118Cs 14 s 2 %K+%β+=100, %Kp<4.2E-2 , %Kα<2.4E-3
118m1Cs 17 s (7-) %K+%β+=100, %Kp<4.2E-2 , %Kα<2.4E-3
119Cs 43.0 s 9/2+ %K+%β+=100
119m1Cs 30.4 s 3/2(+) %K+%β+=100
120Cs 64 s 2 %K+%β+=100
120m1Cs 57 s %K+%β+=100, %Kp=7E-6 , %Kα=2.0E-5
121Cs 155 s 3/2(+) %K+%β+=100
121m1Cs 122 s 9/2(+) %K+%β+=83, %IT=17
122Cs 21.0 s 1+ %K+%β+=100
122m1Cs 3.70 m 8- %K+%β+=100
122m2Cs 0.36 s (5) - %IT=100
123Cs 5.94 m 1/2+ %K+%β+=100
123m1Cs 1.64 s (11/2) - %IT=100
124Cs 30.8 s 1+ %K+%β+=100
124m1Cs 6.3 s (7) + %IT=100
125Cs 45 m (1/2+ ) %K+%β+=100
126Cs 1.64 m 1+ %K+%β+=100
127Cs 6.25 h 1/2+ %K+%β+=100
128Cs 3.66 m 1+ %K+%β+=100
129Cs 32.06 h 1/2+ %K+%β+=100
130Cs 29.21 m 1+ %K+%β+=98.4, %β-=1.6
130m1Cs 3.46 m 5- %IT=99.84 , %K+%β+=0.16
131Cs 9.689 d 5/2+ %K=100
132Cs 6.479 d 2+ %K+%β+=98.13 , %β-=1.87
133Cs stable 7/2+ %Abundance=100
134Cs 2.0648 a 4+ %β-=99.9997 , %K=0.0003
134m1Cs 2.903 h 8- %IT=100
135Cs 2.3e+6 a 7/2+ %β-=100
135m1Cs 53 m 19/2- %IT=100
136Cs 13.16 d 5+ %β-=100
136m1Cs 19 s 8- %IT=?, %β-=?
137Cs 30.07 a 7/2+ %β-=100
138Cs 33.41 m 3- %β-=100
138m1Cs 2.91 m 6- %β-=19 , %IT=81
139Cs 9.27 m 7/2+ %β-=100
140Cs 63.7 s 1- %β-=100
141Cs 24.94 s 7/2+ %β-=100, %β-n=0.029
142Cs 1.70 s 0- %β-=100, %β-n=0.091
143Cs 1.78 s 3/2+ %β-=100, %β-n=1.62
144Cs 1.01 s 1 %β-=100, %β-n=3.17
144m1Cs 1 s (GE 4) %β-=?
145Cs 0.594 s 3/2+ %β-=100, %β-n=13.8
146Cs 0.321 s 1- %β-=100 , %β-n=14.2
147Cs 0.225 s (3/2+ ) %β-=100, %β-n=43
148Cs 158 ms %β-=100, %β-n=25

Barium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
114Ba 0.43 s 0+ %K+%β+ ~ 100, %α=?, %12C ~ 3E-5
115Ba 0.4 s %K+%β+=100
116Ba 0.3 s 0+ %K+%β+=100
117Ba 1.75 s (3/2) %K+%β+=100, %Kp=?, %Kα=?
118Ba 5.5 s 0+ %K+%β+=100
119Ba 5.4 s (5/2+ ) %K+%β+=100, %Kp < 25
120Ba 32 s 0+ %K+%β+=100
121Ba 29.7 s 5/2(+) %K+%β+=100, %Kp=0.02
122Ba 1.95 m 0+ %K+%β+=100
123Ba 2.7 m 5/2+ %K+%β+=100
124Ba 11.0 m 0+ %K+%β+=100
125Ba 3.5 m 1/2(+) %K+%β+=100
126Ba 100 m 0+ %K+%β+ =100
127Ba 12.7 m 1/2+ %K+%β+=100
127m1Ba 1.9 s 7/2- %IT=100
128Ba 2.43 d 0+ %K=100
129Ba 2.23 h 1/2+ %K+%β+=100
129m1Ba 2.16 h 7/2+ %K+%β+ < 100, %IT=?
130Ba stable 0+ %Abundance=0.106
130m1Ba 11 ms 8- %IT=100
131Ba 11.50 d 1/2+ %K+%β+=100
131m1Ba 14.6 m 9/2- %IT=100
132Ba stable 0+ %Abundance=0.101
133Ba 10.51 a 1/2+ %K=100
133m1Ba 38.9 h 11/2- %K=0.0096 , %IT=99.9904
134Ba stable 0+ %Abundance=2.417
134m1Ba 2.63 μs (10+)
135Ba stable 3/2+ %Abundance=6.592
135m1Ba 28.7 h 11/2- %IT=100
136Ba stable 0+ %Abundance=7.854
136m1Ba 0.3084 s 7- %IT=100
137Ba stable 3/2+ %Abundance=11.23
137m1Ba 2.552 m 11/2- %IT=100
138Ba stable 0+ %Abundance=71.70
139Ba 83.06 m 7/2- %β-=100
140Ba 12.752 d 0+ %β-=100
141Ba 18.27 m 3/2- %β-=100
142Ba 10.6 m 0+ %β-=100
143Ba 14.33 s 5/2- %β-=100
144Ba 11.5 s 0+ %β-=100, %β-n=3.6
145Ba 4.31 s 5/2- %β-=100
146Ba 2.22 s 0+ %β-=100
147Ba 0.893 s (3/2+ ) %β-=100, %β-n=0.06
148Ba 0.607 s 0+ %β-=100, %β-n=0.4
149Ba 0.344 s %β-=100, %β-n=0.43
150Ba 0.3 s 0+ %β-=100, %β-n=?

Lanthanum

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
120La 2.8 s %K+%β+=100
121La 5.3 s %K+%β+=100, %Kp=?
122La 8.7 s %K+%β+=100, %Kp=?
123La 17 s %K+%β+=100
124La 29 s %K+%β+=100
124m1La 1 s %K+%β+=100
125La 76 s (11/2-) %K+%β+=100
126La 54 s %K+%β+=100
127La 5.1 m (11/2-) %K+%β+=100
127m1La 3.7 m (3/2+ ) %K+%β+=100, %IT=?
128La 5.0 m (5+ ) %K+%β+=100
128m1La 560 ms (1+ , 2+ ) %K+%β+=100
129La 11.6 m 3/2+ %K+%β+=100
129m1La 0.56 s 11/2- %IT=100
130La 8.7 m 3(+) %K+%β+=100
131La 59 m 3/2+ %K+%β+=100
132La 4.8 h 2- %K+%β+=100
132m1La 24.3 m 6- %IT=76, %K+%β+=24
133La 3.912 h 5/2+ %K+%β+=100
134La 6.45 m 1+ %K+%β+=100
135La 19.5 h 5/2+ %K+%β+=100
136La 9.87 m 1+ %K+%β+=100
136m1La 114 ms %IT=100
137La 6e4 a 7/2+ %K=100
138La 1.05e+11 a 5+ %Abundance=0.0902, %β-=33.6 , %K+%β+=66.4
139La stable 7/2+ %Abundance=99.9098
140La 1.6781 d 3- %β-=100
141La 3.92 h (7/2+ ) %β-=100
142La 91.1 m 2- %β-=100
143La 14.2 m (7/2) + %β-=100
144La 40.8 s (3-) %β-=100
145La 24.8 s (5/2+ ) %β-=100
146La 6.27 s 2- %β-=100
146m1La 10.0 s (6-) %β-=100
147La 4.015 s (5/2+ ) %β-=100, %β-n=0.035
148La 1.05 s (2-) %β-=100 , %β-n=0.11
149La 1.05 s %β-=100, %β-n=1.43
150La 0.86 s %β-=100, %β-n=2.7

Cerium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
123Ce 3.2 s (5/2) %K+%β+=100, %Kp=?
124Ce 6 s 0+ %K+%β+=100
125Ce 9.0 s (5/2+ ) %K+%β+=100, %Kp=?
126Ce 50 s 0+ %K+%β+=100
127Ce 31 s (5/2+ ) %K+%β+=100
128Ce 4.1 s 0+ %K+%β+=100
129Ce 3.5 m 5/2+ %K+%β+=100
130Ce 25 m 0+ %K+%β+=100
131Ce 10.2 m (7/2+ ) %K+%β+=100
131m1Ce 5.0 m (1/2+ ) %K+%β+=100
132Ce 3.51 h 0+ %K+%β+=100
132m1Ce 13 ms (8- ,9-) %IT=100
133Ce 97 m 1/2+ %K+%β+=100
133m1Ce 4.9 h 9/2- %K+%β+=100
134Ce 3.16 d 0+ %K=100
135Ce 17.7 h 1/2(+) %K+%β+=100
135m1Ce 20 s 11/2(-) %IT=100
136Ce stable 0+ %Abundance=0.19
137Ce 9.0 h 3/2+ %K+%β+=100
137m1Ce 34.4 h 11/2- %IT=99.22 , %K+%β+=0.78
138Ce stable 0+ %Abundance=0.25
138m1Ce 8.65 ms 7- %IT=100
139Ce 137.640 d 3/2+ %K=100
139m1Ce 54.8 s 11/2- %IT=100
140Ce stable 0+ %Abundance=88.48
141Ce 32.501 d 7/2- %β-=100
142Ce 5e+16 a 0+ %Abundance=11.08
143Ce 33.039 h 3/2- %β-=100
144Ce 284.893 d 0+ %β-=100
145Ce 3.01 m (3/2) - %β-=100
146Ce 13.52 m 0+ %β-=100
147Ce 56.4 s (5/2-) %β-=100
148Ce 56 s 0+ %β-=100
149Ce 5.3 s (3/2-) %β-=100
150Ce 4.0 s 0+ %β-=100
151Ce 1.02 s %β-=100
152Ce 1.4 s 0+ %β-=100

Praesodymium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
124Pr 1.2 s %K+%β+=100, %Kp=?
125Pr 3.3 s %K+%β+=100
126Pr 3.14 s (3,4,5) %K+%β+=100, %Kp=?
127Pr 4.2 s (11/2-) %K+%β+=100
128Pr 3.1 s 4,5,6 %K+%β+=100, %Kp=?
129Pr 30 s (3/2+ ) %K+%β+=100
130Pr 40.0 s %K+%β+=100
131Pr 1.53 m (3/2+ ) %K+%β+=100
131m1Pr 5.7 s (11/2-) %IT=95 , %K+%β+=5
132Pr 1.6 m %K+%β+=100
133Pr 6.5 m (3/2+ ) %K+%β+=100
134Pr 17 m 2- %K+%β+=100
134m1Pr 11 m (5-) %K+%β+=100
135Pr 24 m 3/2(+) %K+%β+=100
136Pr 13.1 m 2+ %K+%β+=100
137Pr 1.28 h 5/2+ %K+%β+=100
138Pr 1.45 m 1+ %K+%β+=100
138m1Pr 2.12 h 7- %K+%β+=100
139Pr 4.41 h 5/2+ %K+%β+=100
140Pr 3.39 m 1+ %K+β+=100
141Pr stable 5/2+ %Abundance=100
142Pr 19.12 h 2- %β-=99.9836 , %K=0.0164
142m1Pr 14.6 m 5- %IT=100
143Pr 13.57 d 7/2+ %β-=100
144Pr 17.28 m 0- %β-=100
144m1Pr 7.2 m 3- %IT=99.93, %β-=0.07
145Pr 5.984 h 7/2+ %β-=100
146Pr 24.15 m (2) - %β-=100
147Pr 13.4 m (3/2+ ) %β-=100
148Pr 2.27 m 1- %β-=100
148m1Pr 2.0 m (4) %β-=100
149Pr 2.26 m (5/2+ ) %β-=100
150Pr 6.19 s (1) - %β-=100
151Pr 18.90 s (3/2-) %β-=100
152Pr 3.63 s (4-) %β-=100
153Pr 4.28 s %β-=100
154Pr 2.3 s (3+ , 2+ ) %β-=100

Neodymium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
127Nd 1.8 s %K+%β+=100, %Kp=?
128Nd 4 s 0+ %K+%β+=100, %Kp=?
129Nd 7 s (5/2+ ) %K+%β+=100, %Kp=?
130Nd 28 s 0+ %K+%β+=100
131Nd 27 s (5/2) %K+%β+=100 , %Kp=?
132Nd 1.75 m 0+ %β+=100
133Nd 70 s (7/2+ ) %K+%β+=100
133m1Nd 70 s (1/2) + %K+%β+=?, %IT=?
134Nd 8.5 m 0+ %K+%β+=100
134m1Nd 410 μs (8) -
135Nd 12.4 m 9/2(-) %K+%β+=100
135m1Nd 5.5 m (1/2+ ) %K+%β+=100
136Nd 50.65 m 0+ %K+%β+=100
137Nd 38.5 m 1/2+ %K+%β+=100
137m1Nd 1.60 s 11/2- %IT=100
138Nd 5.04 h 0+ %K=100
139Nd 29.7 m 3/2+ %K+%β+=100
139m1Nd 5.50 h 11/2- %K+%β+=88.2 , %IT=11.8
140Nd 3.37 d 0+ %K=100
141Nd 2.49 h 3/2+ %K+%β+=100
141m1Nd 62.0 s 11/2- %IT > 99.95, %K+%β+ < 0.05
142Nd stable 0+ %Abundance=27.13
143Nd stable 7/2- %Abundance=12.18
144Nd 2.29e+15 a 0+ %Abundance=23.80, %α=100
145Nd stable 7/2- %Abundance=8.30
146Nd stable 0+ %Abundance=17.19
147Nd 10.98 d 5/2- %β-=100
148Nd stable 0+ %Abundance=5.76
149Nd 1.728 h 5/2- %β-=100
150Nd 1.1e19 a 0+ %Abundance=5.64, %β- β-=?
151Nd 12.44 m 3/2+ %β-=100
152Nd 11.4 m 0+ %β-=100
153Nd 31.6 s (3/2) - %β-=100
154Nd 25.9 s 0+ %β-=100
155Nd 8.9 s %β-=100
156Nd 5.47 s 0+ %β-=100

Promethium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
132Pm 6.3 s (3+ ) %K+%β+=100 , %Kp ~ 5E-5
133Pm 3/2+ %K+%β+=100
133m1Pm 15 s 11/2- %K+%β+=100, %IT=?
134Pm 5 s (2+ ) %K+%β+=100
134m1Pm 22 s (5+ ) %K+%β+=100
135Pm 45 s (11/2-) %K+%β+=100
135m1Pm 49 s (3/2+ , 5/2+ ) %K+%β+=100
136Pm 47 s (2+ ) %K+%β+=100
136m1Pm 107 s (5-) %K+%β+=100
137Pm 2.4 m 11/2- %K+%β+=100
138Pm 10 s 1+ %K+%β+=100
138m1Pm 3.24 m (5-) %K+%β+=?, %IT=?
139Pm 4.15 m (5/2) + %K+%β+=100
139m1Pm 180 ms (11/2) - %IT=99.94 +5-20, %K+%β+=0.06 +20-5
140Pm 9.2 s 1+ %K+%β+=100
140m1Pm 5.95 m 7- %K+%β+=100
140m2Pm 5.95 m 8- %K+%β+=100
141Pm 20.90 m 5/2+ %K+%β+=100
142Pm 40.5 s 1+ %K+%β+=100
142m1Pm 2.0 ms (8) - %IT=100
143Pm 265 d 5/2+ %K+%β+=100
144Pm 363 d 5- %K+%β+=100
145Pm 17.7 a 5/2+ %K=100, %α=2.8E-7
146Pm 5.53 a 3- %K=66.0 , %β-=34.0
147Pm 2.6234 a 7/2+ %β-=100
148Pm 5.370 d 1- %β-=100
148m1Pm 41.29 d 6- %β-=95.0 , %IT=5.0
149Pm 53.08 h 7/2+ %β-=100
150Pm 2.68 h (1-) %β-=100
151Pm 28.40 h 5/2+ %β-=100
152Pm 4.12 m 1+ %β-=100
152m1Pm 7.52 m 4- %β-=100
152m2Pm 13.8 m (8) %β- < 100, %IT > 0
153Pm 5.25 m 5/2- %β-=100
154Pm 1.73 m (0,1) %β-=100
154m1Pm 2.68 m (3,4) %β-=100
155Pm 41.5 s (5/2-) %β-=100
156Pm 26.70 s 4(-) %β-=100
157Pm 10.56 s (5/2-) %β-=100
158Pm 4.8 s %β-=100

Samarium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
131Sm 1.2 s %K+%β+=100, %Kp=?
132Sm 4.0 s 0+ %K+%β+=100 , %Kp=?
133Sm 3.7 s (5/2+ ) %K+%β+=100, %Kp=?
134Sm 10 s 0+ %K+%β+=100
135Sm 10.3 s (7/2+ ) %K+%β+=100, %Kp=0.02
136Sm 47 s 0+ %K+%β+=100
137Sm 45 s (9/2-) %K+%β+=100
138Sm 3.1 m 0+ %K+%β+=100
139Sm 2.57 m (1/2) + %K+%β+=100
139m1Sm 10.7 s (11/2) - %IT=93.7 , %K+%β+=6.3
140Sm 14.82 m 0+ %K+%β+=100
141Sm 10.2 m 1/2+ %K+%β+=100
141m1Sm 22.6 m 11/2- %K+%β+=99.69 , %IT=0.31
142Sm 72.49 m 0+ %K+%β+=100
143Sm 8.83 m 3/2+ %K+%β+=100
143m1Sm 66 s 11/2- %IT=99.76 , %K+%β+=0.24
143m2Sm 30 ms 23/2(-) %IT=100
144Sm stable 0+ %Abundance=3.1
145Sm 340 d 7/2- %K=100
146Sm 1.03e8 a 0+ %α=100
147Sm 1.06e+11 a 7/2- %Abundance=15.0, %α=100
148Sm 7e+15 a 0+ %Abundance=11.3 , %α=100
149Sm 2e+15 a 7/2- %Abundance=13.8
150Sm stable 0+ %Abundance=7.4
151Sm 90 a 5/2- %β-=100
152Sm stable 0+ %Abundance=26.7
153Sm 46.284 h 3/2+ %β-=100
153m1Sm 10.6 ms 11/2- %IT=100
154Sm stable 0+ %Abundance=22.7
155Sm 22.3 m 3/2- %β-=100
156Sm 9.4 h 0+ %β-=100
157Sm 482 s (3/2-) %β-=100
158Sm 5.30 m 0+ %β-=100
159Sm 11.37 s (5/2-) %β-=100
160Sm 9.6 s 0+ %β-=100

Europium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
134Eu 0.5 s %K+%β+=100, %Kp > 0
135Eu 1.5 s %K+%β+=100, %Kp=?
136Eu 3.3 s (7+ ) %K+%β+=100, %Kp=0.09
136m1Eu 3.7 s (3+ ) %K+%β+=100, %Kp=0.09
137Eu 11 s (11/2-) %K+%β+=100
138Eu 12.1 s (6-) %K+%β+=100
139Eu 17.9 s (11/2) - %K+%β+=100
140Eu 1.51 s 1+ %K+%β+=100
140m1Eu 125 ms (5-) %IT=100 , %K+%β+ < 1
141Eu 40.7 s 5/2+ %K+%β+=100
141m1Eu 2.7 s 11/2- %K+%β+=13 +4-2 , %IT=87 +2-4
142Eu 2.34 s 1+ %K+%β+=100
142m1Eu 1.22 m 8- %K+%β+=100
143Eu 2.63 m 5/2+ %K+%β+=100
144Eu 10.2 s 1+ %K+%β+=100
145Eu 5.93 d 5/2+ %K+%β+=100
146Eu 4.61 d 4- %K+%β+=100
147Eu 24.1 d 5/2+ %K+β+=100, %α=0.0022
148Eu 54.5 d 5- %K+%β+=100, %α=9.4E-7
149Eu 93.1 d 5/2+ %K=100
150Eu 36.9 a 5(-) %K+%β+=100
150m1Eu 12.8 h 0- %K+%β+=11 , %β-=89 , %IT < 5E-8
151Eu stable 5/2+ %Abundance=47.8
152Eu 13.537 a 3- %K=72.1 , %β-=27.9
152m1Eu 9.3116 h 0- %K+%β+=28 , %β-=72
152m2Eu 96 m 8- %IT=100
153Eu stable 5/2+ %Abundance=52.2
154Eu 8.593 a 3- %β-=99.98 , %K+%β+=0.02
154m1Eu 46.3 m (8-) %IT=100
155Eu 4.7611 a 5/2+ %β-=100
156Eu 15.19 d 0+ %β-=100
157Eu 15.18 h 5/2+ %β-=100
158Eu 45.9 m (1-) %β-=100
159Eu 18.1 m 5/2+ %β-=100
160Eu 38 s 1(-) %β-=100
161Eu 26 s %β-=100
162Eu 10.6 s %β-=100

Gadolinium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
139Gd 4.9 s 9/2- %K+%β+=?, %β+P=?
140Gd 15.8 s 0+ %K+%β+=100
141Gd 14 s (1/2+ ) %K+%β+=100, %Kp=0.03
141m1Gd 24.5 s (11/2-) %K+%β+=89 , %IT=11
142Gd 70.2 s 0+ %K+%β+=100
143Gd 39 s (1/2) + %K+%β+=100, %Kp < 0.001
143m1Gd 112 s (11/2-) %K+%β+=100
144Gd 4.5 m 0+ %K+%β+=100
145Gd 23.0 m 1/2+ %K+%β+=100
145m1Gd 85 s 11/2- %IT=94.3 , %K+%β+=5.7
146Gd 48.27 d 0+ %K=100
147Gd 38.06 h 7/2- %K+%β+=100
148Gd 74.6 a 0+ %α=100
149Gd 9.28 d 7/2- %K+%β+=100, %α=4.3E-4
150Gd 1.79e6 a 0+ %α=100
151Gd 124 d 7/2- %K=100, %α ~ 8E-7
152Gd 1.08e14 a 0+ %Abundance=0.20, %α=100
153Gd 240.4 d 3/2- %K=100
154Gd stable 0+ %Abundance=2.18
155Gd stable 3/2- %Abundance=14.80
155m1Gd 31.97 ms 11/2- %IT=100
156Gd stable 0+ %Abundance=20.47
157Gd stable 3/2- %Abundance=15.65
158Gd stable 0+ %Abundance=24.84
159Gd 18.479 h 3/2- %β-=100
160Gd stable 0+ %Abundance=21.86
161Gd 3.66 m 5/2- %β-=100
162Gd 8.4 m 0+ %β-=100
163Gd 68 s (5/2-) %β-=100
164Gd 45 s 0+ %β-=100


Terbium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
140Tb 2.4 s 5 %K+%β+=100, %p=0.26
141Tb 3.5 s (5/2-) %K+%β+=100
142Tb 597 ms 1+ %K+%β+=100 , %Kp=0.0022
142m1Tb 303 ms (5-) %IT=100, %K+%β+ < 0.5
143Tb 12 s (11/2-) %K+%β+=100
143m1Tb 21 s (5/2+ )
144Tb 1 s (1+ ) %K+%β+=100
144m1Tb 4.25 s (6-) %IT=66 , %K+%β+=34
145Tb (1/2+ )
145m1Tb 29.5 s (11/2-) %K+%β+=100
146Tb 8 s 1+ %K+%β+=100
146m1Tb 23 s 5- %K+%β+=100
146m2Tb 1.18 ms (10+) %IT=100
147Tb 1.7 h (1/2+ ) %K+%β+=100
147m1Tb 1.83 m (11/2) - %K+%β+=100
148Tb 60 m 2- %K+%β+=100
148m1Tb 2.20 m 9+ %K+%β+=100
149Tb 4.118 h 1/2+ %K+%β+=83.3 , %α=16.7
149m1Tb 4.16 m 11/2- %K+%β+=99.978 , %α=0.022
150Tb 3.48 h (2-) %K+%β+=100, %α<0.05
150m1Tb 5.8 m 9+ %K+%β+=100
151Tb 17.609 h 1/2(+) %K+%β+=100 , %α=9.5E-3
151m1Tb 25 s (11/2-) %IT=93.8 , %K+%β+=6.2
152Tb 17.5 h 2- %K+%β+=100, %α < 7E-7
152m1Tb 4.2 m 8+ %IT=78.8 , %K+%β+=21.2
153Tb 2.34 d 5/2+ %K+%β+=100
154Tb 21.5 h 0 %K+%β+=100, %β- < 0.1
154m1Tb 9.4 h 3- %K+%β+=78.2 , %IT=21.8 , %β- < 0.1
154m2Tb 22.7 h 7- %K+%β+=98.2 , %IT=1.8
154m3Tb 513 ns
155Tb 5.32 d 3/2+ %K=100
156Tb 5.35 d 3- %K+%β+=100 , %β-=?
156m1Tb 24.4 h (7-) %IT=100
156m2Tb 5.3 h (0+) %IT=?, %K+%β+=?
157Tb 71 a 3/2+ %K=100
158Tb 180 a 3- %K+%β+=83.4 , %β-=16.6
158m1Tb 10.70 s 0- %IT=100, %β- < 0.6, %K+%β+ < 0.01
159Tb stable 3/2+ %Abundance=100
160Tb 72.3 d 3- %β-=100
161Tb 6.88 d 3/2+ %β-=100
162Tb 7.60 m 1- %β-=100
163Tb 19.5 m 3/2+ %β-=100
164Tb 3.0 m (5+ ) %β-=100
165Tb 2.11 m (3/2+ ) %β-=100

Dysprosium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
141Dy 0.9 s (9/2-) %K+%β+=100 , %Kp=?
142Dy 2.3 s 0+ %K+%β+=100, %Kp=0.06
143Dy 4.1 s (1/2+ ) %K+%β+=100, %Kp=?
144Dy 9.1 s 0+ %K+%β+=100, %Kp=?
145Dy 10 s (1/2+ ) %K+%β+=100
145m1Dy 13.6 s (11/2-) %K+%β+=100
146Dy 29 s 0+ %K+%β+=100
146m1Dy 150 ms (10+) %IT=100
147Dy 40 s 1/2+ %K+%β+=100, %Kp=?
147m1Dy 55 s 11/2- %K+%β+=65 , %IT=35
148Dy 3.1 m 0+ %K+%β+=100
149Dy 4.20 m (7/2-) %K+%β+=100
149m1Dy 490 ms (27/2-) %IT=99.3 , %K+%β+=0.7
150Dy 7.17 m 0+ %α=36 , %K+%β+=64
151Dy 17.9 m 7/2(-) %K+%β+=94.4 , %α=5.6
152Dy 2.38 h 0+ %α=0.100 , %K=99.900
153Dy 6.4 h 7/2(-) %K+%β+=99.9906 , %α=0.0094
154Dy 3.0e+6 a 0+ %α=100
155Dy 9.9 h 3/2- %K+%β+=100
156Dy stable 0+ %Abundance=0.06
157Dy 8.14 h 3/2- %K+%β+=100
157m1Dy 21.6 ms 11/2- %IT=100
158Dy stable 0+ %Abundance=0.10
159Dy 144.4 d 3/2- %K=100
160Dy stable 0+ %Abundance=2.34
161Dy stable 5/2+ %Abundance=18.9
162Dy stable 0+ %Abundance=25.5
163Dy stable 5/2- %Abundance=24.9
164Dy stable 0+ %Abundance=28.2
165Dy 2.334 h 7/2+ %β-=100
165m1Dy 1.257 m 1/2- %IT=97.76 , %β-=2.24
166Dy 81.6 h 0+ %β-=100
167Dy 6.20 m (1/2-) %β-=100
168Dy 8.7 m 0+ %β-=100
169Dy 39 s (5/2-) %β-=100


Holmium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
144Ho 0.7 s %K+%β+=100, %Kp=?
145Ho 2.4 s (11/2-) %K+%β+=100
146Ho 3.6 s (10+) %K+%β+=100, %Kp=?
147Ho 5.8 s (11/2-) %K+%β+=100, %Kp=?
148Ho 2.2 s 1+ %K+%β+=100
148m1Ho 9.59 s 6- %K+%β+=100, %Kp=0.08
148m2Ho 2.35 ms (10+) %IT=100
149Ho 21.1 s (11/2-) %K+%β+=100
149m1Ho 56 s (1/2+ ) %K+%β+=100
150Ho 72 s 2- %K+%β+=100
150m1Ho 23.3 s (9) + %K+%β+=100
151Ho 35.2 s (11/2-) %K+%β+=78 , %α=22
151m1Ho 47.2 s (1/2+ ) %α=80 +15-20, %K+%β+=20 +20- 15
152Ho 161.8 s 2- %α=12 , %K+%β+=88
152m1Ho 50.0 s 9+ %α=10.8 , %K+%β+=89.2
153Ho 2.01 m 11/2- %K+%β+=99.949 , %α=0.051
153m1Ho 9.3 m 1/2+ %K+%β+=99.82 , %α=0.18
154Ho 11.76 m (2) - %K+%β+=99.981 , %α=0.019
154m1Ho 3.10 m 8+ %K+%β+=100, %α < 0.001
155Ho 48 m 5/2+ %K+%β+=100
156Ho 56 m (4+ ) %K+%β+=100
156m1Ho 9.5 s (1+ ) %IT=?, %K+%β+=?
157Ho 12.6 m 7/2- %K+%β+=100
158Ho 11.3 m 5+ %K+%β+=100
158m1Ho 28 m 2- %K+%β+ < 19, %IT > 81
158m2Ho 21.3 m (9+ ) %K+%β+ > 93, %IT < 7
159Ho 33.05 m 7/2- %K+%β+=100
159m1Ho 8.30 s 1/2+ %IT=100
160Ho 25.6 m 5+ %K+%β+=100
160m1Ho 5.02 h 2- %IT=65 , %K+%β+=35
160m2Ho 3 s (9+ ) %IT=100
161Ho 2.48 h 7/2- %K=100
161m1Ho 6.76 s 1/2+ %IT=100
162Ho 15.0 m 1+ %K+%β+=100
162m1Ho 67.0 m 6- %IT=62, %K+%β+=38
163Ho 4570 a 7/2- %K=100
163m1Ho 1.09 s 1/2+ %IT=100
164Ho 29 m 1+ %K=60 , %β-=40
164m1Ho 37.5 m 6- %IT=100
165Ho stable 7/2- %Abundance=100
166Ho 26.83 h 0- %β-=100
166m1Ho 1.20e3 a (7) - %β-=100
167Ho 3.1 h 7/2- %β-=100
168Ho 2.99 m 3+ %β-=100
168m1Ho 132 s (6+ ) %IT > 99.5, %β- < 0.5
169Ho 4.7 m 7/2- %β-=100
170Ho 2.76 m (6+ ) %β-=100
170m1Ho 43 s (1+ ) %β-=100
171Ho 53 s (7/2-) %β-=100
172Ho 25 s %β-=100

Erbium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
145Er 0.9 s (11/2-) %K+%β+=100, %Kp=?
146Er 1.7 s 0+ %K+%β+=100, %Kp=?
147Er 2.5 s (11/2-) %K+%β+=100, %Kp=?
147m1Er 2.5 s (1/2+ ) %K+%β+=100, %Kp=?
148Er 4.6 s 0+ %K+%β+=100, %Kp ~ 0.15
149Er 4 s (1/2+ ) %K+%β+=100, %Kp=7
149m1Er 8.9 s (11/2-) %K+%β+=96.5 , %IT=3.5 , %Kp=0.18
150Er 18.5 s 0+ %K+%β+=100
151Er 23.5 s (7/2-) %K+%β+=100
151m1Er 0.58 s (27/2-) %IT=95.3 , %K+%β+=4.7
152Er 10.3 s 0+ %K+%β+=10 , %α=90
153Er 37.1 s (7/2-) %α=53 , %K+%β+=47
154Er 3.73 m 0+ %K+%β+=99.53 , %α=0.47
155Er 5.3 m 7/2- %K+%β+=99.978 , %α=0.022
156Er 19.5 m 0+ %K+%β+=100
157Er 18.65 m 3/2- %K+%β+=100
157m1Er 76 ms (9/2+ ) %IT=100
158Er 2.29 h 0+ %K=100
159Er 36 m 3/2- %K+%β+=100
160Er 28.58 h 0+ %K=100
161Er 3.21 h 3/2- %K+%β+=100
162Er stable 0+ %Abundance=0.14
163Er 75.0 m 5/2- %K+%β+=100
164Er stable 0+ %Abundance=1.61
165Er 10.36 h 5/2- %K=100
166Er stable 0+ %Abundance=33.6
167Er stable 7/2+ %Abundance=22.95
167m1Er 2.269 s 1/2- %IT=100
168Er stable 0+ %Abundance=26.8
169Er 9.40 d 1/2- %β-=100
170Er stable 0+ %Abundance=14.9
171Er 7.516 h 5/2- %β-=100
172Er 49.3 h 0+ %β-=100
173Er 1.4 m (7/2-) %β-=100
174Er 3.3 m 0+ %β-=100
175Er 1.2 m (9/2+ ) %β-=100


Thullium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
146Tm 235 ms (10+) %K+%β+ ~ 55, %p ~ 45
146m1Tm 72 ms (5- ,6-) %p=100, %K+%β+=?
147Tm 0.56 s (11/2-) %K+%β+ ~ 90, %p ~ 10
147m1Tm 360 μs (1/2+,3/2+ )
148Tm 0.7 s (10+ ) %K+%β+=100
149Tm 0.9 s (11/2-) %K+%β+=100, %Kp=0.2 +2-1
150Tm 2.2 s (6-) %K+%β+=100, %Kp=1.2
150m1Tm 5.2 ms (10+) %IT=100
151Tm 4.17 s (11/2-) %K+%β+=100
151m1Tm 6.6 s (1/2+ ) %K+%β+=100
152Tm 8.0 s (2) - %K+%β+=100
152m1Tm 5.2 s (9) + %K+%β+=100
153Tm 1.48 s (11/2-) %α=91 , %K+%β+=9
153m1Tm 2.5 s (1/2+ ) %α=92 , %K+%β+=8
154Tm 8.1 s (2-) %K+%β+=56 , %α=44
154m1Tm 3.30 s (9+ ) %α=90 sys%K+%β+=10 sys%IT=?
155Tm 21.6 s (11/2-) %K+%β+=98.1 , %α=1.9
155m1Tm 45 s (1/2+ ) %K+%β+>92, %α<8
156Tm 83.8 s 2- %K+%β+=99.936 , %α=0.064
156m1Tm 19 s %α=?
157Tm 3.63 m 1/2+ %K+%β+=100
158Tm 3.98 m 2- %K+%β+=100
158m1Tm 20 ns (5+ )
158m2Tm 16 ns (9-)
159Tm 9.13 m 5/2+ %K+%β+=100
160Tm 9.4 m 1- %K+%β+=100
160m1Tm 74.5 s 5 %K+%β+=15 , %IT=85
161Tm 33 m 7/2+ %K+%β+=100
162Tm 21.70 m 1- %K+%β+=100
162m1Tm 24.3 s 5+ %IT=82 , %K+%β+=18
163Tm 1.810 h 1/2+ %K+%β+=100
164Tm 2.0 m 1+ %K+%β+=100
164m1Tm 5.1 m 6- %IT ~ 80, %K+%β+ ~ 20
165Tm 30.06 h 1/2+ %K+%β+=100
166Tm 7.70 h 2+ %K+%β+=100
166m1Tm 350 ms 6- %IT=100
167Tm 9.25 d 1/2+ %K=100
168Tm 93.1 d 3(+) %K+%β+=99.990 , %β-=0.010
169Tm stable 1/2+ %Abundance=100
170Tm 128.6 d 1- %K=0.131 , %β-=99.869
171Tm 1.92 a 1/2+ %β-=100
172Tm 63.6 h 2- %β-=100
173Tm 8.24 h (1/2+ ) %β-=100
174Tm 5.4 m (4) - %β-=100
175Tm 15.2 m 1/2+ %β-=100
176Tm 1.9 m (4+ ) %β-=100
177Tm 85 s (1/2+ ) %β-=100

Ytterbium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
151Yb 1.6 s (1/2+ ) %K+%β+=100, %Kp=?
151m1Yb 1.6 s (11/2-) %K+%β+ ~ 100, %Kp=?
152Yb 3.04 s 0+ %K+%β+=100, %Kp=?
153Yb 4.2 s 7/2- %α=50 sys %K+%β+=50 sys
154Yb 0.409 s 0+ %α=92.6 , %K+%β+=7.4
155Yb 1.800 s (7/2-) %α=89 , %K+%β+=11
156Yb 26.1 s 0+ %K+%β+=90 , %α=10
157Yb 38.6 s 7/2- %K+%β+=99.5, %α=0.5
158Yb 1.49 m 0+ %α ~ 0.0021 , %K+%β+=100
159Yb 1.58 m 5/2(-) %K+%β+=100
160Yb 4.8 m 0+ %K+%β+=100
161Yb 4.2 m 3/2- %K+%β+=100
162Yb 18.87 m 0+ %K+%β+=100
163Yb 11.05 m 3/2- %K+%β+=100
164Yb 75.8 m 0+ %K=100
165Yb 9.9 m 5/2- %K+%β+=100
166Yb 56.7 h 0+ %K=100
167Yb 17.5 m 5/2- %K+%β+=100
168Yb stable 0+ %Abundance=0.13
169Yb 32.026 d 7/2+ %K=100
169m1Yb 46 s 1/2- %IT=100
170Yb stable 0+ %Abundance=3.05
171Yb stable 1/2- %Abundance=14.3
171m1Yb 5.25 ms 7/2+ %IT=100
172Yb stable 0+ %Abundance=21.9
173Yb stable 5/2- %Abundance=16.12
174Yb stable 0+ %Abundance=31.8
175Yb 4.185 d 7/2- %β-=100
175m1Yb 68.2 ms 1/2- %IT=100
176Yb stable 0+ %Abundance=12.7
176m1Yb 11.4 s (8-) %IT > 90, %β- < 10
177Yb 1.911 h (9/2+ ) %β-=100
177m1Yb 6.41 s (1/2-) %IT=100
178Yb 74 m 0+ %β-=100
179Yb 8.0 m (1/2-) %β-=100
180Yb 2.4 m 0+ %β-=100

Lutetium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
150Lu 35 ms %p=80 , %K+%β+=20
151Lu 88 ms (11/2-) %p=70
152Lu 0.7 s (5- ,6-) %K+%β+=100, %Kp=15
153Lu 0.9 s 11/2- %α ~ 70 , %K+%β+ ~ 30
154Lu (2-)
154m1Lu 1.12 s (9+ ) %K+%β+ ~ 100
154m2Lu 35 μs (17+ )
155Lu 140 ms (1/2+ , 3/2+ ) %α=?
155m1Lu 68 ms (11/2-) %α=79 , %K+%β+=21
155m2Lu 2.60 ms (25/2-) %α ~ 100
156Lu 198 ms (9+ ) %α ~ 95 , %K+%β+=5
156m1Lu 494 ms (2-) %α=79 , %K+%β+=21
157Lu 6.8 s (1/2+ , 3/2+ ) %α > 0
157m1Lu 4.79 s (11/2-) %α=6 , %K+%β+=94
158Lu 10.6 s %α=0.91 , %K+%β+=99.09
159Lu 12.1 s %K+%β+=99.96 sys%α=0.04 sys
160Lu 36.1 s %K+%β+=100, %α < 1E-4
160m1Lu 40 s %K+%β+ < 100, %α=?
161Lu 77 s (5/2+ ) %K+%β+=100
161m1Lu 7.3 ms (9/2-) %IT=100
162Lu 1.37 m (1-) %K+%β+=100
162m1Lu 1.5 m (4-) %K+%β+ < 100
162m2Lu 1.9 m %K+%β+ < 100
163Lu 238 s (1/2-) %K+%β+=100
164Lu 3.14 m %K+%β+=100
165Lu 10.74 m (7/2+ ) %K+%β+=100
165m1Lu 12 m 1/2+
166Lu 2.65 m (6-) %K+%β+=100
166m1Lu 1.41 m (3-) %K+%β+=58 , %IT=42
166m2Lu 2.12 m (0- ) %K+%β+>80, %IT<20
167Lu 51.5 m 7/2+ %K+%β+=100
168Lu 5.5 m (6-) %K+%β+=100
168m1Lu 6.7 m 3+ %K+%β+ > 95, %IT < 5
169Lu 34.06 h 7/2+ %K+%β+=100
169m1Lu 160 s 1/2- %IT=100
170Lu 2.012 d 0+ %K+%β+=100
170m1Lu 0.67 s (4) - %IT=100
171Lu 8.24 d 7/2+ %K+%β+=100
171m1Lu 79 s 1/2- %IT=100
172Lu 6.70 d 4- %K+%β+=100
172m1Lu 3.7 m 1- %IT=100
173Lu 1.37 a 7/2+ %K=100
174Lu 3.31 a (1) - %K+%β+=100
174m1Lu 142 d (6) - %IT=99.38 , %K=0.62
175Lu stable 7/2+ %Abundance=97.41
176Lu 3.78e10 a 7- %Abundance=2.59, %β-=100
176m1Lu 3.635 h 1- %β-=99.905 , %K=0.095
177Lu 6.734 d 7/2+ %β-=100
177m1Lu 160.4 d 23/2- %β-=78.3 , %IT=21.7
178Lu 28.4 m 1(+) %β-=100
178m1Lu 23.1 m (9-) %β-=100
179Lu 4.59 h 7/2(+) %β-=100
179m1Lu 3.1 ms 1/2(+) %IT=100
180Lu 5.7 m (5) + %β-=100
181Lu 3.5 m (7/2+ ) %β-=100
182Lu 2.0 m (0,1,2) %β-=100
183Lu 58 s (7/2+ ) %β-=100
184Lu 20 s (2+ ) %β-=100

Hafnium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
154Hf 2 s 0+ %K+%β+=100
155Hf 0.89 s %K+%β+=100, %α=?
156Hf 25 ms 0+ %α > 81
156m1Hf 444 μs
157Hf 110 ms 7/2- %α=86 , %K+%β+=14
158Hf 2.85 s 0+ %α=44 , %K+%β+=56
159Hf 5.6 s %K+%β+=59 , %α=41
160Hf 13.6 s 0+ %K+%β+=99.3 , %α=0.7
161Hf 16.8 s (13/2+ ) %K+%β+=99.71 , %α=0.29
162Hf 37.6 s 0+ %K+%β+=99.9937 , %α=0.0063
163Hf 40.0 s %K+%β+=100
164Hf 111 s 0+ %K+%β+=100
165Hf 76 s (5/2-) %K+%β+=100
166Hf 6.77 m 0+ %K+%β+=100
167Hf 2.05 m (5/2-) %K+%β+=100
168Hf 25.95 m 0+ %K+%β+=100
169Hf 3.24 m (5/2) - %K+%β+=100
170Hf 16.01 h 0+ %K=100
171Hf 12.1 h (7/2+ ) %K+%β+=100
172Hf 1.87 a 0+ %K=100
173Hf 23.6 h 1/2- %K+%β+=100
174Hf 2.0e15 a 0+ %Abundance=0.162, %α=100
175Hf 70 d 5/2- %K=100
176Hf stable 0+ %Abundance=5.206
177Hf stable 7/2- %Abundance=18.606
177m1Hf 1.08 s 23/2+ %IT=100
177m2Hf 51.4 m 37/2- %IT=100
178Hf stable 0+ %Abundance=27.297
178m1Hf 4.0 s 8- %IT=100
178m2Hf 31 a 16+ %IT=100
179Hf stable 9/2+ %Abundance=13.629
179m1Hf 18.67 s 1/2- %IT=100
179m2Hf 25.05 d 25/2- %IT=100
180Hf stable 0+ %Abundance=35.100
180m1Hf 5.5 h 8- %IT=99.7 , %β-=0.3
181Hf 42.39 d 1/2- %β-=100
182Hf 9e6 a 0+ %β-=100
182m1Hf 61.5 m 8- %β-=58 , %IT=42
183Hf 1.067 h (3/2-) %β-=100
184Hf 4.12 h 0+ %β-=100
184m1Hf 48 s (8-) %IT=100
185Hf 3.5 m %β-=100

Tantalum

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
156Ta 144 ms (2-) %p ~ 100
156m1Ta 375 ms (9+ ) %K+%β+=95.8 , %p=4.2
157Ta 10.1 ms 1/2+ %α=96.6 , %p=3.4
157m1Ta 4.3 ms 11/2- %K+%β+ ~ 5
158Ta 36.5 ms (2-) %α=93 , %K+%β+=7
158m1Ta 49 ms (9+ ) %α ~ 100
159Ta 0.57 s %α=80 , %K+%β+=20
160Ta 1.55 s (9+ ) %K+%β+=66, %α=34
160m1Ta 1.7 s (2-) %α=?
161Ta 2.7 s %K+%β+ ~ 95, %α ~ 5
162Ta 3.52 s %K+%β+=99.926 , %α=0.074
163Ta 10.6 s %K+%β+ ~ 99.8, %α ~ 0.2
164Ta 14.2 s (3+ ) %K+%β+=100
165Ta 31.0 s %K+%β+=100
166Ta 34.4 s (2) + %K+%β+=100
167Ta 1.4 m (3/2+ ) %K+%β+=100
168Ta 2.0 m (3+ ) %K+%β+=100
169Ta 4.9 m (5/2-) %K+%β+=100
170Ta 6.76 m (3+ ) %K+%β+=100
171Ta 23.3 m (5/2-) %K+%β+=100
172Ta 36.8 m (3+ ) %K+%β+=100
173Ta 3.14 h 5/2- %K+%β+=100
174Ta 1.05 h 3+ %K+%β+=100
174m1Ta 250 ns
175Ta 10.5 h 7/2+ %K+%β+=100
176Ta 8.09 h (1) - %K+%β+=100
176m1Ta 1.1 ms (+) %IT=100
176m2Ta 1.4 ms (20- )
177Ta 56.56 h 7/2+ %K+%β+=100
178Ta 9.31 m 1+ %K+%β+=100
178m1Ta 2.36 h (7) - %K+%β+=100
178m2Ta 60 ms (15-) %IT=100
179Ta 1.82 a 7/2+ %K=100
179m1Ta 9.0 ms (25/2+ )
179m2Ta 52 ms (37/2+ )
180Ta 8.152 h 1+ %Abundance=0.012, %K=86 , %β-=14
180m1Ta 1.2e+15 a 9-
181Ta stable 7/2+ %Abundance=99.988
182Ta 114.43 d 3- %β-=100
182m1Ta 283 ms 5+ %IT=100
182m2Ta 15.84 m 10- %IT=100
183Ta 5.1 d 7/2+ %β-=100
184Ta 8.7 h (5-) %β-=100
185Ta 49.4 m (7/2+ ) %β-=100
186Ta 10.5 m (2- ,3-) %β-=100

Tungsten

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
158W 0.9 ms 0+ %α=100
158m1W 0.16 ms 8+
159W 7.3 ms %α ~ 99.5, %K+%β+ ~ 0.5
160W 91 ms 0+ %α=87 , %K+%β+=?
161W 410 ms %α=82
162W 1.39 s 0+ %K+%β+=53 , %α=47
163W 2.75 s %K+%β+=59 , %α=41
164W 6.0 s 0+ %K+%β+=95.6 , %α=4.4
165W 5.1 s %K+%β+=100 , %α < 0.2
166W 18.8 s 0+ %K+%β+=99.965 , %α=0.035
167W 19.9 s (7/2-) %K+%β+=?, %α=?
168W 53 s 0+ %K+%β+ ~ 100, %α=2.7E-3
169W 76 s (5/2-) %K+%β+=100
170W 2.42 m 0+ %K+%β+=100
171W 2.38 m (5/2-) %K+%β+=100
172W 6.6 m 0+ %K+%β+=100
173W 7.6 m 5/2- %K+%β+=100
174W 31 m 0+ %K+%β+=100
175W 35.2 m (1/2-) %K+%β+=100
176W 2.5 h 0+ %K=100
177W 135 m (1/2-) %K+%β+=100
178W 21.6 d 0+ %K=100
179W 37.05 m (7/2) - %K+%β+=100
179m1W 6.40 m (1/2) - %IT=99.72 , %K+%β+=0.28
180W stable 0+ %Abundance=0.13
180m1W 5.47 ms 8- %IT=100
181W 121.2 d 9/2+ %K=100
182W stable 0+ %Abundance=26.3
183W 1.1e+17 a 1/2- %Abundance=14.3
183m1W 5.2 s 11/2+ %IT=100
184W 3e+17 a 0+ %Abundance=30.67
185W 75.1 d 3/2- %β-=100
185m1W 1.67 m 11/2+ %IT=100
186W stable 0+ %Abundance=28.6
187W 23.72 h 3/2- %β-=100
188W 69.4 d 0+ %β-=100
189W 11.5 m (3/2-) %β-=100
190W 30.0 m 0+ %β-=100

Rhenium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
160Re 0.79 ms %p=91 , %α=9
161Re 0.37 ms (1/2+ ) %p=100
161m1Re 16 ms (11/2-) %α=95.2 , %p=4.8
162Re 107 ms (2-) %α=94
162m1Re 75 ms (9+ ) %α=91
163Re 260 ms %α=64 , %K+%β+=36
164Re 0.38 s %K+%β+ ~ 100
164m1Re 0.88 s %α=?
165Re 2.4 s %K+%β+=87 , %α=13
166Re 2.8 s %α < 8
167Re 6.1 s %K+%β+ ~ 99.3, %α ~ 0.7
168Re 4.4 s (6+ ) %K+%β+ ~ 100, %α ~ 5E-3
169Re
169m1Re 12.9 s %α ~ 0.2
170Re 9.2 s (5+ ) %K+%β+=100
171Re 15.2 s (9/2-) %K+%β+=100
172Re 15 s (5) %K+%β+=100
172m1Re 55 s (2) %K+%β+=100
173Re 1.98 m (5/2-) %K+%β+=100
174Re 2.40 m %K+%β+=100
175Re 5.89 m (5/2-) %K+%β+=100
176Re 5.3 m 3(+) %K+%β+=100
177Re 14 m (5/2-) %K+%β+=100
178Re 13.2 m (3+ ) %K+%β+=100
179Re 19.5 m (5/2) + %K+%β+=100
180Re 2.44 m (1) - %K+%β+=100
181Re 19.9 h 5/2+ %K+%β+=100
182Re 64.0 h 7+ %K+%β+=100
182m1Re 12.7 h 2+ %K+%β+=100
183Re 70.0 d 5/2+ %K=100
183m1Re 1.04 ms (25/2) + %IT=100
184Re 38.0 d 3(-) %K+%β+=100
184m1Re 169 d 8(+) %IT=75.4 , %K=24.6
185Re stable 5/2+ %Abundance=37.40
186Re 3.7183 d 1- %K=7.47 , %β-=92.53
186m1Re 2.0e+5 a (8+ ) %IT=100
187Re 4.35e10 a 5/2+ %Abundance=62.60, %β-=100, %α < 0.0001
188Re 17.005 h 1- %β-=100
188m1Re 18.6 m (6) - %IT=100
189Re 24.3 h 5/2+ %β-=100
190Re 3.1 m (2) - %β-=100
190m1Re 3.2 h (6-) %β-=54.4 , %IT=45.6
191Re 9.8 m (3/2+ , 1/2+ ) %β-=100
192Re 16 s %β-=100

Osmium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
162Os 1.9 ms 0+ %α=100
163Os %α=?, %K+%β+=?
164Os 21 ms 0+ %α ~ 98 , %K+%β+ ~ 2
165Os 71 ms (7/2-) %α > 60 , %K+%β+ < 40
166Os 181 ms 0+ %α=72 , %K+%β+=28
167Os 0.83 s %α=67 , %K+%β+=33
168Os 2.1 s 0+ %K+%β+=56 , %α=44
169Os 3.4 s %K+%β+=89 , %α=11
170Os 7.3 s 0+ %K+%β+=88 , %α=12
171Os 8.0 s (5/2-) %K+%β+=98.3 , %α=1.7
172Os 19.2 s 0+ %K+%β+=99.0 , %α=1.0
173Os 16 s (5/2-) %K+%β+=99.979 , %α=0.021
174Os 44 s 0+ %K+%β+=99.980 +4-10, %α=0.020 +10-4
175Os 1.4 m (5/2-) %K+%β+=100
176Os 3.6 m 0+ %K+%β+=100
177Os 2.8 m (1/2-) %K+%β+=100
178Os 5.0 m 0+ %K+%β+=100
179Os 6.5 m (1/2-) %K+%β+=100
180Os 21.5 m 0+ %K+%β+=100
181Os 105 m 1/2- %K+%β+=100
181m1Os 2.7 m (7/2) - %K+%β+=100
182Os 22.10 h 0+ %K=100
183Os 13.0 h 9/2+ %K+%β+=100
183m1Os 9.9 h 1/2- %K+%β+=85 , %IT=15
184Os 5.6e13 a 0+ %Abundance=0.02
185Os 93.6 d 1/2- %K=100
186Os 2.0e15 a 0+ %Abundance=1.58, %α=100
187Os stable 1/2- %Abundance=1.6
188Os stable 0+ %Abundance=13.3
189Os stable 3/2- %Abundance=16.1
189m1Os 5.8 h 9/2- %IT=100
190Os stable 0+ %Abundance=26.4
190m1Os 9.9 m (10) - %IT=100
191Os 15.4 d 9/2- %β-=100
191m1Os 13.10 h 3/2- %IT=100
192Os stable 0+ %Abundance=41.0
192m1Os 5.9 s (10- ) %IT > 87, %β- < 13
193Os 30.11 h 3/2- %β-=100
194Os 6.0 a 0+ %β-=100
195Os 6.5 m %β-=100
196Os 34.9 m 0+ %β-=100

Iridium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
165Ir 300 μs (11/2-) %p=87 , %α=13
166Ir 10.5 ms (2-) %α=93 , %p=7
166m1Ir 15.1 ms (9+ ) %α=98.2 , %p=1.8
167Ir 5 ms %α=?
168Ir 161 ms %α=?
169Ir 0.4 s %α ~ 100, %K+%β+=?, %p=?
170Ir 1.05 s %K+%β+=25 sys%α=75 sys
171Ir 1.5 s %α ~ 100, %K+%β+=?, %p=?
172Ir 4.4 s (3+ ) %α ~ 2, %K+%β+=98
172m1Ir 2.0 s (7+ ) %α=23 , %K+%β+=77
173Ir 9.0 s (3/2+ , 5/2+ ) %K+%β+ > 93, %α < 7
173m1Ir 2.20 s (11/2-) %K+%β+=88 , %α=12
174Ir 9 s (3+ ) %K+%β+=99.53 , %α=0.47
174m1Ir 4.9 s (7+ ) %K+%β+=97.5 , %α=2.5
175Ir 9 s (5/2-) %K+%β+=99.15 , %α=0.85
176Ir 8 s %K+%β+=97.9 , %α=2.1
177Ir 30 s (5/2-) %K+%β+=99.94 , %α=0.06
178Ir 12 s %K+%β+=100
179Ir 79 s (5/2) - %K+%β+=100
180Ir 1.5 m %K+%β+=100
181Ir 4.90 m (5/2) - %K+%β+=100
182Ir 15 m (5+ ) %K+%β+=100
183Ir 58 m 5/2- %K+%β+=100
184Ir 3.09 h 5- %K+%β+=100
185Ir 14.4 h 5/2- %K+%β+=100
186Ir 16.64 h 5+ %K+%β+=100
186m1Ir 1.90 h 2- %K+%β+ ~ 75, %IT ~ 25
187Ir 10.5 h 3/2+ %K+%β+=100
187m1Ir 30.3 ms 9/2- %IT=100
188Ir 41.5 h 1- %K+%β+=100
188m1Ir 4.2 ms
189Ir 13.2 d 3/2+ %K=100
189m1Ir 13.3 ms 11/2- %IT=100
189m2Ir 3.7 ms (25/2) + %IT=100
190Ir 11.78 d (4-) %K+%β+=100, %β- < 0.002
190m1Ir 1.2 h (1-) %IT=100
190m2Ir 3.25 h (11) - %K+%β+=94.4 , %IT=5.6
191Ir stable 3/2+ %Abundance=37.3
191m1Ir 4.94 s 11/2- %IT=100
191m2Ir 5.5 s %IT=100
192Ir 73.831 d 4(+) %β-=95.24 , %K=4.76
192m1Ir 1.45 m 1(-) %IT=99.982, %β-=0.018
192m2Ir 241 a (9) %IT=100
193Ir stable 3/2+ %Abundance=62.7
193m1Ir 10.53 d 11/2- %IT=100
194Ir 19.28 h 1- %β-=100
194m1Ir 31.85 ms (4+ ) %IT=100
194m2Ir 171 d (10,11) %β-=100
195Ir 2.5 h 3/2+ %β-=100
195m1Ir 3.8 h 11/2- %β-=95 , %IT=5
196Ir 52 s (0- ) %β-=100
196m1Ir 1.40 h (10,11-) %β- ~ 100 , %IT < 0.3
197Ir 5.8 m 3/2+ %β-=100
197m1Ir 8.9 m 11/2- %β-=99.75 , %IT=0.25
198Ir 8 s %β-=100

Platinum

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
168Pt 2.0 ms 0+ %α=100
169Pt 5 ms %α=?
170Pt 6 ms 0+ %α=100
171Pt 25 ms %α ~ 99, %K+%β+ ~ 1
172Pt 0.096 s 0+ %α=94 +6-32 , %K+%β+=6 +32-6
173Pt 342 ms %K+%β+=16 , %α=84
174Pt 0.90 s 0+ %α=75 , %K+%β+=25
175Pt 2.52 s %α=64 , %K+%β+=36
176Pt 6.33 s 0+ %K+%β+=62 , %α=38
177Pt 11 s (5/2-) %K+%β+=94.4 , %α=5.6
178Pt 21.1 s 0+ %K+%β+=95.4 , %α=4.6
179Pt 21.2 s 1/2- %K+%β+=99.76 , %α=0.24
180Pt 52 s 0+ %K+%β+=100, %α ~ 0.3
181Pt 51 s 1/2- %K+%β+=100, %α ~ 0.06
182Pt 3.0 m 0+ %K+%β+=99.969 , %α=0.031
183Pt 6.5 m 1/2- %K+%β+ ~ 100, %α ~ 0.0013
183m1Pt 43 s (7/2) - %K+%β+=100, %α=?
184Pt 17.3 m 0+ %K+%β+=100, %α ~ 0.001
184m1Pt 1.01 ms 8- %IT=100
184m2Pt 1.1 ms 8-
185Pt 70.9 m 9/2+ %K+%β+=100, %α=0.0050
185m1Pt 33.0 m 1/2- %K+%β+=99 , %IT < 2
186Pt 2.2 h 0+ %K+%β+=100, %α ~ 0.00010
187Pt 2.35 h 3/2- %K+%β+=100
188Pt 10.2 d 0+ %K=100, %α=2.9E-5
189Pt 10.87 h 3/2- %K+%β+=100
190Pt 6.5e11 a 0+ %Abundance=0.01, %α=100
191Pt 2.802 d 3/2- %K=100
192Pt stable 0+ %Abundance=0.79
193Pt 50 a 1/2- %K=100
193m1Pt 4.33 d 13/2+ %IT=100
194Pt stable 0+ %Abundance=32.9
195Pt stable 1/2- %Abundance=33.8
195m1Pt 4.02 d 13/2+ %IT=100
196Pt stable 0+ %Abundance=25.3
197Pt 19.8915 h 1/2- %β-=100
197m1Pt 95.41 m 13/2+ %IT=96.7 , %β-=3.3
198Pt stable 0+ %Abundance=7.2
199Pt 30.80 m 5/2- %β-=100
199m1Pt 13.6 s (13/2) + %IT=100
200Pt 12.5 h 0+ %β-=100
201Pt 2.5 m (5/2-) %β-=100
202Pt 44 h 0+ %β-=100

Gold

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
172Au 6.3 ms %α ~ 100, %p < 2
173Au 59 ms %α < 100
174Au 120 ms %α=?
175Au 200 ms %α=94 +6-25, %K+%β+=6 +25-6
176Au 1.08 s %α=?, %K+%β+=?
177Au 1.18 s %α < 40
178Au 2.6 s %K+%β+ < 60, %α > 40
179Au 7.1 s %K+%β+=78.0 , %α=22.0
180Au 8.1 s %K+%β+ < 98.2, %α > 1.8
181Au 11.4 s 5/2- %K+%β+=98.7 , %α=1.3
182Au 15.6 s %K+%β+=99.87 , %α=0.13
183Au 42.0 s (5/2) - %K+%β+=99.70 , %α=0.30
184Au 53.0 s 3+ %K+%β+=99.978, %α=0.022
185Au 4.25 m 5/2- %K+%β+=99.74 , %α=0.26
185m1Au 6.8 m %K+%β+ < 100, %IT=?
186Au 10.7 m 3- %K+%β+=100, %α=8E-4
187Au 8.4 m 1/2+ %K+%β+=100, %α=0.003 sys
187m1Au 2.3 s 9/2- %IT=100
188Au 8.84 m 1(-) %K+%β+=100
189Au 28.7 m 1/2+ %K+%β+=100, %α < 3E-5
189m1Au 4.59 m 11/2- %K+%β+ ~ 100, %IT > 0
190Au 42.8 m 1- %K+%β+=100, %α < 1E-6
190m1Au 125 ms (11-) %IT=?, %K+%β+=?
191Au 3.18 h 3/2+ %K+%β+=100
191m1Au 0.92 s (11/2-) %IT=100
192Au 4.94 h 1- %K+%β+=100
192m1Au 29 ms (5) + %IT=100
192m2Au 160 ms (11-) %IT=100
193Au 17.65 h 3/2+ %K+%β+=100
193m1Au 3.9 s 11/2- %IT=99.97, %K+%β+ ~ 0.03
194Au 38.02 h 1- %K+%β+=100
194m1Au 600 ms (5+ ) %IT=100
194m2Au 420 ms (11-) %IT=100
195Au 186.09 d 3/2+ %K=100
195m1Au 30.5 s 11/2- %IT=100
196Au 6.183 d 2- %K+%β+=92.80 , %β- =7.20
196m1Au 8.1 s 5+ %IT=100
196m2Au 9.6 h 12- %IT=100
197Au stable 3/2+ %Abundance=100
197m1Au 7.73 s 11/2- %IT=100
198Au 2.69517 d 2- %β-=100
198m1Au 2.27 d (12-) %IT=100
199Au 3.139 d 3/2+ %β-=100
200Au 48.4 m 1(-) %β-=100
200m1Au 18.7 h 12- %β-=82 , %IT=18
201Au 26 m 3/2+ %β-=100
202Au 28.8 s (1-) %β-=100
203Au 53 s 3/2+ %β-=100
204Au 39.8 s (2-) %β-=100
205Au 31 s (3/2+ ) %β-=100

Mercury

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
175Hg 20 ms %α=100
176Hg 18 ms 0+ %α ~ 100
177Hg 0.130 s %α=85, %K+%β+=15
178Hg 266 ms 0+ %K+%β+=?, %α ~ 100
179Hg 1.09 s %K+%β+ ~ 47, %α ~ 53, %Kp ~ 0.15
180Hg 2.8 s 0+ %K+%β+=52 , %α=48
181Hg 3.6 s 1/2(-) %K+%β+=64 , %α=36 , %Kp=0.014 , %Kα=9E-6
182Hg 10.83 s 0+ %K+%β+=84.8 , %α=15.2
183Hg 9.4 s 1/2- %K+%β+=88.3 , %α=11.7 , %Kp=0.00056
184Hg 30.9 s 0+ %K+%β+=98.74 , %α=1.26
185Hg 49.1 s 1/2- %K+%β+=94 , %α=6
185m1Hg 21.6 s 13/2+ %IT=54 , %K+%β+=46 , %α ~ 0.03
186Hg 1.38 m 0+ %K+%β+=99.982 , %α=0.018
187Hg 2.4 m 13/2+ %K+%β+=100, %α>1.2E-4
187m1Hg 1.9 m 3/2- %K+%β+=100, %α>2.5E-4
188Hg 3.25 m 0+ %K+%β+=100, %α=4.0E-5
189Hg 7.6 m 3/2- %K+%β+=100, %α < 3E-5
189m1Hg 8.6 m 13/2+ %K+%β+=100, %α < 3E-5
190Hg 20.0 m 0+ %K+%β+=100, %α < 5E-5
191Hg 49 m (3/2-) %K+%β+=100
191m1Hg 50.8 m 13/2+ %K+%β+=100
192Hg 4.85 h 0+ %K=100, %α < 4E-6
193Hg 3.80 h 3/2- %K+%β+=100
193m1Hg 11.8 h 13/2+ %K+%β+=92.8 , %IT=7.2
194Hg 444 a 0+ %K=100
195Hg 9.9 h 1/2- %K+%β+=100
195m1Hg 41.6 h 13/2+ %IT=54.2 , %K+%β+=45.8
196Hg stable 0+ %Abundance=0.15
197Hg 64.14 h 1/2- %K=100
197m1Hg 23.8 h 13/2+ %K=8.6 , %IT=91.4
198Hg stable 0+ %Abundance=9.97
199Hg stable 1/2- %Abundance=16.87
199m1Hg 42.6 m 13/2+ %IT=100
200Hg stable 0+ %Abundance=23.10
201Hg stable 3/2- %Abundance=13.18
202Hg stable 0+ %Abundance=29.86
203Hg 46.612 d 5/2- %β-=100
204Hg stable 0+ %Abundance=6.87
205Hg 5.2 m 1/2- %β-=100
205m1Hg 1.10 ms (13/2+ ) %IT=100
206Hg 8.15 m 0+ %β-=100
207Hg 2.9 m (9/2+ ) %β-=100
208Hg 42 m 0+ %β-=100

Thallium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
179Tl 0.16 s %α ~ 100
179m1Tl 1.4 ms (9/2-) %α ~ 100
180Tl 0.70 s %K+%β+=?, %KSF ~ 1.0E-4
181Tl (1/2+ )
181m1Tl 3.4 s (9/2-) %α=?
182Tl 3.1 s (7+ ) %K+%β+ > 96, %α < 4
183Tl (1/2+ )
183m1Tl 60 ms (9/2-) %α < 0.010
184Tl 11 s %K+%β+=97.9 , %α=2.1
185Tl 19.5 s (1/2+ ) %K+%β+=?
185m1Tl 1.83 s (9/2-) %IT=?, %α=?
186Tl 27.5 s (7+ ) %K+%β+=100, %α ~ 0.006
186m1Tl 2.9 s (10- ) %IT=100
187Tl 51 s (1/2+ ) %K+%β+=?, %α=?
187m1Tl 15.60 s (9/2-) %α=?, %K+%β+=?, %IT=?
188Tl 71 s (2-) %K+%β+=100
188m1Tl 71 s (7+ ) %K+%β+=100
188m2Tl 41 ms (9-) %IT=100
189Tl 2.3 m (1/2+ ) %K+%β+=100
189m1Tl 1.4 m (9/2-) %K+%β+=100, %IT<4
190Tl 2.6 m (2) - %K+%β+=100
190m1Tl 3.7 m (7+ ) %K+%β+=100
191Tl (1/2+ )
191m1Tl 5.22 m 9/2(-) %K+%β+=100
192Tl 9.6 m (2-) %K+%β+=100
192m1Tl 10.8 m (7+ ) %K+%β+=100
193Tl 21.6 m 1/2+ %K+%β+=100
193m1Tl 2.11 m 9/2- %IT=75, %K+%β+=25
194Tl 33.0 m 2- %K+%β+=100 , %α < 1E-7
194m1Tl 32.8 m (7+ ) %K+%β+=100
195Tl 1.16 h 1/2+ %K+%β+=100
195m1Tl 3.6 s 9/2- %IT=100
196Tl 1.84 h 2- %K+%β+=100
196m1Tl 1.41 h (7+ ) %K+%β+=95.5 , %IT=4.5
197Tl 2.84 h 1/2+ %K+%β+=100
197m1Tl 0.54 s 9/2- %IT=100
198Tl 5.3 h 2- %K+%β+=100
198m1Tl 1.87 h 7+ %IT=46 , %K+%β+=54
198m2Tl 32.1 ms (10- ) %IT=100
199Tl 7.42 h 1/2+ %K+%β+=100
199m1Tl 28.4 ms 9/2- %IT=100
200Tl 26.1 h 2- %K+%β+=100
200m1Tl 34.3 ms 7+ %IT=100
201Tl 72.912 h 1/2+ %K=100
201m1Tl 2.035 ms (9/2-) %IT=100
202Tl 12.23 d 2- %K+%β+=100
202m1Tl 572 μs 7+
203Tl stable 1/2+ %Abundance=29.524
204Tl 3.78 a 2- %β-=97.10 , %K+%β+=2.90
205Tl stable 1/2+ %Abundance=70.476
206Tl 4.199 m 0- %β-=100
206m1Tl 3.74 m (12-) %IT=100
207Tl 4.77 m 1/2+ %β-=100
207m1Tl 1.33 s 11/2- %IT=100, %β- < 0.1
208Tl 3.053 m 5(+) %β-=100
209Tl 2.20 m (1/2+ ) %β-=100
210Tl 1.30 m (5+ ) %β-=100, %β-n=0.007 +7- 4



Lead

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
181Pb 45 ms (13/2+ ) %α ~ 98
182Pb 55 ms 0+ %α=?
183Pb 300 ms (1/2-) %α ~ 94, %K+%β+ ~ 6
184Pb 0.55 s 0+ %α=?
185Pb 4.1 s %α < 100
186Pb 4.83 s 0+ %α=54 , %K+%β+=46
187Pb 18.3 s (13/2+ ) %K+%β+=98.0, %α=2.0
187m1Pb 15.2 s %α=?, %K+%β+=?
188Pb 24 s 0+ %K+%β+=91.5 , %α=8.5
189Pb 51 s %K+%β+ > 99, %α ~ 0.4
190Pb 1.2 m 0+ %K+%β+=99.79 , %α=0.21
191Pb 1.33 m (3/2-) %K+%β+=99.987 , %α=0.013
191m1Pb 2.18 m (13/2+ ) %K+%β+=100, %α ~ 0.02
192Pb 3.5 m 0+ %K+%β+=99.9941 , %α=0.0059
193Pb 2 m (3/2-) %K+%β+=?
193m1Pb 5.8 m (13/2+ ) %K+%β+=100
194Pb 12.0 m 0+ %K+%β+=100, %α=7.3E-6
195Pb 15 m 3/2- %K+%β+=100
195m1Pb 15.0 m 13/2+ %K+%β+=100
196Pb 37 m 0+ %K+%β+=100, %α < 3E-5
197Pb 8 m 3/2- %K+%β+=100
197m1Pb 43 m 13/2+ %K+%β+=81 , %IT=19
198Pb 2.40 h 0+ %K+%β+=100
199Pb 90 m 3/2- %K+%β+=100
199m1Pb 12.2 m 13/2+ %IT=93, %K+%β+=7
200Pb 21.5 h 0+ %K=100
201Pb 9.33 h 5/2- %K+%β+=100
201m1Pb 61 s 13/2+ %IT>99, %K+%β+<1
202Pb 5.25e4 a 0+ %K=100, %α<1
202m1Pb 3.53 h 9- %IT=90.5 , %K+%β+=9.5
203Pb 51.873 h 5/2- %K=100
203m1Pb 6.3 s 13/2+ %IT=100
203m2Pb 0.48 s 29/2- %IT=100
204Pb 1.4e17 a 0+ %Abundance=1.4
204m1Pb 67.2 m 9- %IT=100
205Pb 1.53e+7 a 5/2- %K=100
205m1Pb 5.54 ms 13/2+ %IT=100
206Pb stable 0+ %Abundance=24.1
207Pb stable 1/2- %Abundance=22.1
207m1Pb 0.805 s 13/2+ %IT=100
208Pb stable 0+ %Abundance=52.4
209Pb 3.253 h 9/2+ %β-=100
210Pb 22.3 a 0+ %β-=100, %α=1.9E-6
211Pb 36.1 m 9/2+ %β- =100
212Pb 10.64 h 0+ %β-=100
213Pb 10.2 m (9/2+ ) %β-=100
214Pb 26.8 m 0+ %β-=100
215Pb 36 s (5/2+ ) %β-=100

Bismuth

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
185Bi 44 μs (1/2+ ) %p ~ 100
186Bi 15.0 ms (3+ ) %α ~ 100
186m1Bi 9.8 ms (10- ) %α ~ 100
187Bi 35 ms (9/2-) %α>50
187m1Bi 0.8 ms (1/2+ )
188Bi 0.21 s %α=?, %K+%β+=?
188m1Bi 44 ms %α=?, %K+%β+=?
189Bi 680 ms (9/2-) %α > 50, %K+%β+ < 50
189m1Bi 5 ms (1/2+ ) %α > 50, %K+%β+ < 50
190Bi 6.3 s (3+ ) %α=80 , %K+%β+=20
190m1Bi 6.2 s (10- ) %α=70 , %K+%β+=30
191Bi 12 s (9/2-) %α=60 , %K+%β+=40
191m1Bi 150 ms (1/2+ ) %α > 50, %K+%β+ < 50
192Bi 37 s (2+ , 3+ ) %K+%β+=82 , %α=18
192m1Bi 39.6 s (10- ) %K+%β+=90.8 , %α=9.2
193Bi 67 s (9/2-) %K+%β+=96.5 , %α=3.5
193m1Bi 3.2 s (1/2+ ) %α=90 +10-20, %K+%β+=10 +20-10
194Bi 95 s (3+ ) %K+%β+=99.54 , %α=0.46
194m1Bi 115 s (10- ) %K+%β+=99.80 , %α=0.20
194m2Bi 125 s (6+ , 7+ ) %K+%β+=100
195Bi 183 s (9/2-) %K+%β+=99.967 , %α=0.033
195m1Bi 87 s (1/2+ ) %K+%β+=67 , %α=33
196Bi 308 s (3+ ) %K+%β+=100, %α=0.00115
196m1Bi 0.6 s (7+ ) %IT=100
196m2Bi 240 s (10- ) %K+%β+=74.2 , %IT=25.8 , %α=0.00038
197Bi 9.33 m (9/2-) %K+%β+=100, %α=1E-4 sys
197m1Bi 5.04 m (1/2+ ) %K+%β+=45 , %α=55 , %IT < 0.3
198Bi 10.3 m (2+ , 3+ ) %K+%β+=100
198m1Bi 11.6 m (7+ ) %K+%β+=100
198m2Bi 7.7 s (10- ) %IT=100
199Bi 27 m 9/2- %K+%β+=100
199m1Bi 24.70 m (1/2+ ) %K+%β+=99 , %α ~ 0.01, %IT < 2
200Bi 36.4 m 7+ %K+%β+=100
200m1Bi 31 m (2+ ) %K+%β+ > 90, %IT < 10
200m2Bi 0.40 s (10- ) %IT=100
201Bi 108 m 9/2- %K+%β+=100, %α < 1E-4
201m1Bi 59.1 m 1/2+ %K > 93, %IT < 6.8, %α ~ 0.3
202Bi 1.72 h 5+ %K+%β+=100, %α<1E-5
203Bi 11.76 h 9/2- %K+%β+=100, %α ~ 1E-5
203m1Bi 303 ms 1/2+ %IT=100
204Bi 11.22 h 6+ %K+%β+=100
204m1Bi 13.0 ms 10- %IT=100
204m2Bi 1.07 ms (17+ ) %IT=100
205Bi 15.31 d 9/2- %K+%β+=100
206Bi 6.243 d 6(+) %K+%β+=100
207Bi 31.55 a 9/2- %K+%β+=100
208Bi 3.68e+5 a (5) + %K+%β+=100
208m1Bi 2.58 ms (10) - %IT=100
 Bi 1.9 10  yr 9/2- %α=100 , %Abundance=100
210Bi 5.013 d 1- %β-=100, %α=1.32E-4
210m1Bi 3.04e+6 a 9- %α=100
211Bi 2.14 m 9/2- %α=99.724 , %β-=0.276
212Bi 60.55 m 1(-) %β-=64.06 , %α=35.94 , %β-α=0.023
212m1Bi 25.0 m (9-) %α=67 , %β-=33 , %β-α=30
212m2Bi 7.0 m %β- ~ 100
213Bi 45.59 m 9/2- %β-=97.91 , %α=2.09
214Bi 19.9 m 1- %β-=99.979 , %α=0.021
215Bi 7.6 m %β-=100
216Bi 3.6 m (1-) %β- ~ 100
217Bi 97 s (9/2-) %β-=100

Polonium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
190Po 2.0 ms 0+ %α=100, %K+%β+=0.1 sys
191Po 15.5 ms %α=?
192Po 0.0332 s 0+ %α=100
193Po 0.42 s (3/2- ) %α=?
193m1Po 0.24 s (13/2+ ) %α=?
194Po 0.392 s 0+ %α=93
195Po 4.64 s (3/2- ) %α=75 , %K+%β+=25
195m1Po 1.92 s (13/2+ ) %α ~ 90, %K+%β+ ~ 10, %IT < 0.01
196Po 5.8 s 0+ %α ~ 98, %K+%β+ ~ 2
197Po 53.6 s (3/2- ) %K+%β+=56 , %α=44
197m1Po 25.8 s (13/2+ ) %α=84 , %K+%β+=16 , %IT=0.01 sys
198Po 1.77 m 0+ %α=57 , %K+%β+=43
199Po 5.48 m 3/2- %K+%β+=88 , %α=12
199m1Po 4.13 m 13/2+ %K+%β+=59 , %α=39 , %IT=2.1
200Po 11.5 m 0+ %α=11.1 , %K+%β+=88.9
201Po 15.3 m 3/2- %K+%β+=98.4 , %α=1.6
201m1Po 8.9 m 13/2+ %IT=56 , %K=41 , %α ~ 2.9
202Po 44.7 m 0+ %K+%β+=98.08 , %α=1.92
202m1Po 85 ns 8+
202m2Po 200 ns 11-
202m3Po 19 ns 12+
202m4Po 11 ns (15-)
203Po 36.7 m 5/2- %K+%β+=99.89 , %α=0.11
203m1Po 45 s 13/2+ %IT ~ 100 , %α ~ 0.04 sys
204Po 3.53 h 0+ %K+%β+=99.34 , %α=0.66
205Po 1.66 h 5/2- %K+%β+=99.96 , %α=0.04
205m1Po 58 ms 19/2- %IT=100
206Po 8.8 d 0+ %K+%β+=94.55 , %α=5.45
207Po 5.80 h 5/2- %K+%β+=99.979 , %α=0.021
207m1Po 2.8 s 19/2- %IT=100
208Po 2.898 a 0+ %α=99.9958 , %K+%β+=0.0042
209Po 102 a 1/2- %α=99.52 , %K+%β+=0.48
210Po 138.376 d 0+ %α=100
211Po 0.516 s 9/2+ %α=100
211m1Po 25.2 s (25/2+ ) %α=99.984 , %IT=0.016
212Po 0.299 μs 0+ %α=100
212m1Po 45.1 s (18+) %α=99.93 , %IT=0.07
213Po 4.2 μs 9/2+ %α=100
214Po 164.3 μs 0+ %α=100
215Po 1.781 ms 9/2+ %α=99.99977 , %β-=2.3E-4
216Po 0.145 s 0+ %α=100
217Po 10 s %α > 95, %β- < 5
218Po 3.10 m 0+ %α=99.980 , %β-=0.020

Astatine

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
193At 40 ms %α=?
194At 40 ms %α=?
194m1At 250 ms %α=?
195At 0.63 s %α > 75, %K+%β+ < 25
196At 0.253 s %α ~ 100
197At 0.35 s (9/2- ) %α=96 , %K+%β+=4
197m1At 3.7 s (1/2+ ) %α=?, %K+%β+=?
198At 4.2 s (3+ ) %α=90 , %K+%β+=10
198m1At 1.0 s (10- ) %α=84 , %K+%β+=16
199At 7.2 s (9/2- ) %α=90 , %K+%β+=10
200At 43 s (3+ ) %α=57 , %K+%β+=43
200m1At 47 s (7+) %α=43 , %K+%β+ < 57
200m2At 3.5 s (10- ) %α ~ 10.5, %IT ~ 85, %K ~ 4.5
201At 89 s (9/2- ) %α=71 , %K+%β+=29
202At 184 s (2,3)+ %K+%β+=82 , %α=18
202m1At 182 s (7+) %K+%β+=91.3, %α=8.7
202m2At 0.46 s (10- ) %IT=99.7 , %K+%β+=0.25 sys %α=0.096
203At 7.4 m 9/2- %K+%β+=69 , %α=31
204At 9.2 m 7+ %K+%β+=96.2 , %α=3.8
204m1At 108 ms (10- ) %IT=100
205At 26.2 m 9/2- %K+%β+=90 , %α=10
206At 30.0 m (5)+ %K+%β+=99.11 , %α=0.89
207At 1.80 h 9/2- %K+%β+=91.4 , %α=8.6
208At 1.63 h 6+ %K+%β+=99.45 , %α=0.55
209At 5.41 h 9/2- %K+%β+=95.9 , %α=4.1
210At 8.1 h (5)+ %K+%β+=99.825 , %α=0.175
211At 7.214 h 9/2- %α=41.80 , %K=58.20
212At 0.314 s (1- ) %α=100, %β- < 2E-6, %K+%β+ < 3E-2
212m1At 0.119 s (9-) %α > 99, %IT < 1
213At 125 ns 9/2- %α=100
214At 558 ns 1- %α=100
214m1At 265 ns
214m2At 760 ns 9-
215At 0.10 ms 9/2- %α=100
216At 0.30 ms 1- %α=100, %K<3E-7, %β-<6E-3
216m1At 0.1 ms (9-)
217At 32.3 ms 9/2- %α=99.988 , %β-=0.012
218At 1.5 s %α=99.9 , %β-=0.1
219At 56 s %α ~ 97, %β- ~ 3
220At 3.71 m 3 %α=8 , %β-=92
221At 2.3 m %β-=100
222At 54 s %β-=100
223At 50 s %β-=100, %α=0.008 sys

Radon

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
196Rn 3 ms 0+ %α ~ 100
197Rn 65 ms (3/2- ) %α ~ 100
197m1Rn 19 ms (13/2+ ) %α ~ 100
198Rn 64 ms 0+ %α=100
199Rn 0.62 s (3/2- ) %α=94 sys, %K+%β+=6 sys
199m1Rn 0.32 s (13/2+ ) %α=97 sys, %K+%β+=3 sys
200Rn 0.96 s 0+ %α=86 +14-4, %K+%β+<18
201Rn 7.0 s (3/2- ) %α ~ 80 , %K+%β+ ~ 20
201m1Rn 3.8 s (13/2+ ) %α ~ 90, %K+%β+ ~ 10, %IT ~ 0
202Rn 10.0 s 0+ %α=86 , %K+%β+=14
203Rn 45 s (3/2,5/2)- %α=66 , %K+%β+=34
203m1Rn 28 s (13/2+ ) %α ~ 80 sys%K+%β+ ~ 20 sys
204Rn 1.24 m 0+ %α=73 , %K+%β+=27
205Rn 2.8 m 5/2- %K+%β+=77 , %α=23
206Rn 5.67 m 0+ %α=63 , %K+%β+=37
207Rn 9.25 m 5/2- %K+%β+=79 , %α=21
208Rn 24.35 m 0+ %α=62 , %K+%β+=38
209Rn 28.5 m 5/2- %K+%β+=83 , %α=17
210Rn 2.4 h 0+ %α=96 , %K+%β+=4
211Rn 14.6 h 1/2- %K=72.6 , %α=27.4
212Rn 23.9 m 0+ %α=100
213Rn 25.0 ms (9/2+ ) %α=100
214Rn 0.27 μs 0+ %α=100
214m1Rn 0.69 ns 6+
214m2Rn 6.5 ns 8+
215Rn 2.30 μs 9/2+ %α=100
216Rn 45 μs 0+ %α=100
217Rn 0.54 ms 9/2+ %α=100
218Rn 35 ms 0+ %α=100
219Rn 3.96 s 5/2+ %α=100
220Rn 55.6 s 0+ %α=100
221Rn 25 m 7/2(+) %β-=78 , %α=22
222Rn 3.8235 d 0+ %α=100
223Rn 23.2 m 7/2 %β-=100, %α=0.0004 sys
224Rn 107 m 0+ %β-=100
225Rn 4.5 m 7/2- %β-=100
226Rn 7.4 m 0+ %β-=100
227Rn 22.5 s %β-=100
228Rn 65 s 0+ %β-=100

Francium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
200Fr 19 ms (3+ ) %α=100
200m1Fr 0.57 s (10- ) %α=100
201Fr 48 ms (9/2- ) %α=100 , %K+%β+ < 1
202Fr 0.34 s (3+ ) %α ~ 97 , %K+%β+ ~ 3
202m1Fr 0.34 s (10- ) %α ~ 97 , %K+%β+ ~ 3
203Fr 0.55 s (9/2- ) %α ~ 95 , %K+%β+ ~ 5
204Fr 1.7 s (3+ ) %α ~ 80, %K+%β+ ~ 20
204m1Fr 2.6 s (7+) %α=?
204m2Fr 1 s (10- ) %α=?
205Fr 3.85 s (9/2- ) %α > 99, %K+%β+ < 1
206Fr 15.9 s (5+) %α=84 , %K+%β+=16
206m1Fr 0.7 s (10- ) %α=0.3 , %IT=?
207Fr 14.8 s 9/2- %α=95 , %K+%β+=5
208Fr 59.1 s 7+ %α=90 , %K+%β+=10
209Fr 50.0 s 9/2- %α=89 , %K+%β+=11
210Fr 3.18 m 6+ %α=60 , %K+%β+=40
211Fr 3.10 m 9/2- %α>80, %K<20
212Fr 20.0 m 5+ %K+%β+=57 , %α=43
213Fr 34.6 s 9/2- %α=99.45 , %K+%β+=0.55
214Fr 5.0 ms (1- ) %α=100
214m1Fr 3.35 ms (8-) %α=100
215Fr 86 ns 9/2- %α=100
215m1Fr 3.5 ns (23/2)-
216Fr 0.70 μs (1- ) %α=100, %K<2E-7 sys
217Fr 22 μs 9/2- %α=100
218Fr 1.0 ms 1- %α=100
218m1Fr 22.0 ms %α < 100 , %IT=?
219Fr 20 ms 9/2- %α=100
220Fr 27.4 s 1+ %α=99.65 , %β-=0.35
221Fr 4.9 m 5/2- %α=100, %γ=8.8E-11
222Fr 14.2 m 2- %β-=100
223Fr 21.8 m 3/2(-) %β-=99.994, %α=0.006
224Fr 3.33 m 1- %β-=100
225Fr 4.0 m 3/2- %β-=100
226Fr 49 s 1- %β-=100
227Fr 2.47 m 1/2+ %β-=100
228Fr 38 s 2- %β-=100
229Fr 50 s %β-=100
230Fr 19.1 s %β-=100
231Fr 17.5 s %β-=100
232Fr 5 s %β-=100

Radium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
202Ra 0.7 ms 0+ %α=100
203Ra 1.0 ms (3/2- ) %α ~ 100
203m1Ra 33 ms (13/2+ ) %α ~ 100
204Ra 59 ms 0+ %α ~ 100
205Ra 210 ms (3/2- ) %α=?
205m1Ra 170 ms (13/2+ ) %α=?
206Ra 0.24 s 0+ %α ~ 100
207Ra 1.3 s (5/2,3/2)- %α ~ 90, %K+%β+ ~ 10
207m1Ra 55 ms (13/2+ ) %IT=85 sys%α=15 sys %K+%β+ ~ 0.55
208Ra 1.3 s 0+ %α=95 sys %K+%β+=5 sys
209Ra 4.6 s 5/2- %α ~ 90, %K+%β+ ~ 10
210Ra 3.7 s 0+ %α ~ 96, %K+%β+ ~ 4
211Ra 13 s 5/2(-) %α > 93, %K < 7
212Ra 13.0 s 0+ %α ~ 85, %K+%β+ ~ 15
213Ra 2.74 m 1/2- %α=80 , %K+%β+=20
213m1Ra 2.1 ms %IT ~ 99, %α ~ 1
214Ra 2.46 s 0+ %α=99.941 , %K=0.059
215Ra 1.59 ms (9/2+ ) %α=100
216Ra 182 ns 0+ %α=100, %K<1E-8
217Ra 1.6 μs (9/2+ ) %α=100
218Ra 25.6 μs 0+ %α=100
219Ra 10 ms (7/2)+ %α=100
220Ra 18 ms 0+ %α=100
221Ra 28 s 5/2+ %α=100, %γ=1.2E-10
222Ra 38.0 s 0+ %α=100, %14C=3.0E-8
223Ra 11.435 d 3/2+ %α=100, %14C=6.4E-8
224Ra 3.66 d 0+ %α=100, %14C=4.3E-9
225Ra 14.9 d 1/2+ %β-=100
226Ra 1600 a 0+ %α=100, %14C=3.2E-9
227Ra 42.2 m 3/2+ %β-=100
228Ra 5.75 a 0+ %β-=100
229Ra 4.0 m 5/2(+) %β-=100
230Ra 93 m 0+ %β-=100
231Ra 103 s (7/2-,1/2+ ) %β-=100
232Ra 250 s 0+ %β-=100
233Ra 30 s %β-=100
234Ra 30 s 0+ %β-=100

Actinium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
206Ac 22 ms (3+ ) %α=?
206m1Ac 33 ms (10- )
207Ac 22 ms (9/2- ) %α ~ 100
208Ac 95 ms (3+ ) %α=?
208m1Ac 25 ms (10- ) %α=?
209Ac 0.10 s (9/2- ) %α ~ 99, %K+%β+ ~ 1
210Ac 0.35 s %α ~ 96, %K+%β+ ~ 4
211Ac 0.25 s %α ~ 100
212Ac 0.93 s %α ~ 97, %K+%β+ ~ 3
213Ac 0.80 s %α < 100
214Ac 8.2 s %α > 89 , %K < 11
215Ac 0.17 s 9/2- %α=99.91 , %K+%β+=0.09
216Ac 0.33 ms (1- ) %α=100
216m1Ac 0.33 ms (9-)
217Ac 69 ns 9/2- %α=100, %K+%β+ < 2
217m1Ac 740 ns (29/2)+
218Ac 1.08 μs (1- ) %α=100
219Ac 11.8 μs 9/2- %α=100, %K+%β+ ~ 1E-6
220Ac 26.4 ms (3-) %α=100
221Ac 52 ms (3/2- ) %α=100
222Ac 5.0 s 1- %α=99 , %K+%β+=1
222m1Ac 63 s %α > 88, %IT < 10 , %K+%β+ < 2
223Ac 2.10 m (5/2- ) %α=99, %K=1
224Ac 2.78 h 0- %K=90.9 +14-20, %α=9.1 +20-14, %β- < 1.6 sys
225Ac 10.0 d (3/2- ) %α=100, %14C=6.0E-10
226Ac 29.37 h (1) %α=6E-3 , %β-=83 , %K=17
227Ac 21.773 a 3/2- %β-=98.620 , %α=1.380
228Ac 6.15 h 3+ %β-=100
229Ac 62.7 m (3/2+ ) %β-=100
230Ac 122 s (1+ ) %β-=100
231Ac 7.5 m (1/2+ ) %β-=100
232Ac 119 s (1+ ) %β-=100
233Ac 145 s (1/2+ ) %β-=100
234Ac 44 s %β-=100

Thorium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
210Th 9 ms 0+ %α ~ 100
211Th 37 ms %α=?, %K=?
212Th 30 ms 0+ %α=100, %K+%β+ ~ 0.3
213Th 140 ms %α < 100
214Th 100 ms 0+ %α=100
215Th 1.2 s (1/2- ) %α=100
216Th 0.028 s 0+ %α=100, %K+%β+ ~ 0.01 sys
216m1Th 180 μs (8+,11- )
217Th 0.252 ms (9/2+ ) %α=100
218Th 109 ns 0+ %α=100
219Th 1.05 μs %α=100, %K+%β+ ~ 1E-7
220Th 9.7 μs 0+ %α=100, %K=2E-7 sys
221Th 1.68 ms (7/2+ ) %α=100
222Th 2.8 ms 0+ %α=100
223Th 0.60 s (5/2)+ %α=100
224Th 1.05 s 0+ %α=100
225Th 8.72 m (3/2)+ %α ~ 90, %K ~ 10
226Th 30.57 m 0+ %α=100
227Th 18.72 d (1/2+ ) %α=100
228Th 1.9116 a 0+ %α=100, %20O=1.13E-11
229Th 7340 a 5/2+ %α=100
230Th 7.538e+4 a 0+ %α=100, %24NE=5.6E-11 , %SF < 3.8E-12
231Th 25.52 h 5/2+ %β-=100, %α ~ 1E-8
232Th 1.405e10 a 0+ %Abundance=100, %α=100 , %SF<1.8E-9
233Th 22.3 m 1/2+ %β-=100
234Th 24.10 d 0+ %β-=100
235Th 7.1 m (1/2+ ) %β-=100
236Th 37.5 m 0+ %β-=100
237Th 5.0 m %β-=100

Protactinium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
<212Pa 5.1 ms (3+ ) %α=?
213Pa 5.3 ms %α=?
214Pa 17 ms %α=?
215Pa 14 ms %α=100
216Pa 0.20 s %K ~ 2 sys %α ~ 98 sys
217Pa 4.9 ms %α =100
217m1Pa 1.6 ms %α < 100
218Pa 0.12 ms %α=100
219Pa 53 ns 9/2- %α=100, %K+%β+ ~ 5E-9
220Pa 0.78 μs %α=100, %K+%β+=3E-7 sys
221Pa 5.9 μs 9/2- %α=100
222Pa 2.9 ms %α=100
223Pa 6.5 ms %α=100, %K+%β+ < 1.0E-3
224Pa 0.79 s %α=100
225Pa 1.7 s %α=100
226Pa 1.8 m %α=74 , %K+%β+=26
227Pa 38.3 m (5/2- ) %α=85 , %K=15
228Pa 22 h 3+ %K+%β+=98.0 , %α=2.0
229Pa 1.50 d (5/2+ ) %K=99.52 , %α=0.48
230Pa 17.4 d (2- ) %K+%β+=91.6 , %β-=8.4 , %α=0.0032
231Pa 32760 a 3/2- %α=100, %SF < 1.6E-11
232Pa 1.31 d (2- ) %β-=99.997 , %K=0.003
233Pa 26.967 d 3/2- %β-=100
234Pa 6.70 h 4+ %β-=100, %SF < 3E-10
234m1Pa 1.17 m (0- ) %β-=99.84 , %IT=0.16 , %SF < 1E-9
235Pa 24.5 m (3/2- ) %β-=100
236Pa 9.1 m 1(-) %β-=100
237Pa 8.7 m (1/2+ ) %β-=100
238Pa 2.3 m (3-) %β-=100, %SF < 2.6E-6

Uranium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
218U 1.5 ms 0+ %α=100
219U 42 μs %α=?
220U
221U
222U 1.0 μs 0+ %α=100
223U 18 μs %α=?
224U 0.9 ms 0+ %α=100
225U 95 ms %α=100
226U 0.35 s 0+ %α=100
227U 1.1 m (3/2+ ) %α=100, %K+%β+ < 0.001
228U 9.1 m 0+ %K<5, %α>95
229U 58 m (3/2+ ) %K+%β+ ~ 80, %α ~ 20
230U 20.8 d 0+ %α=100, %SF < 1.4E-10
231U 4.2 d (5/2- ) %K=100, %α ~ 0.0055
232U 68.9 a 0+ %α=100, %24NE=9E-11
233U 1.592e+5 a 5/2+ %α=100, %SF < 6E-11, %24NE < 9.5E-11
234U 2.455e+5 a 0+ %Abundance=0.0055, %α=100, %SF=1.64E-9 , %nE=9E-12 , %MG=1.4E-11
235U 7.038e+8 a 7/2- %Abundance=0.7200, %α=100, %SF=7.0E-9 , %20NE=8E-10
235m1U 25 m 1/2+ %IT=100
236U 2.342e7 a 0+ %α=100, %SF=9.4E-8
237U 6.75 d 1/2+ %β-=100
238U 4.468e+9 a 0+ %Abundance=99.2745, %α=100, %SF=5.45E-5 , %ββ=2.2E-10
238m1U 225 ns 0+
238m2U 1 ns
239U 23.45 m 5/2+ %β-=100
240U 14.1 h 0+ %β-=100
241U
242U 16.8 m 0+ %β-=100

Neptunium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
225Np 6 ms %α=?
226Np 35 ms %α=100
227Np 0.51 s %α=100, %K+%β+ ~ 0.05
228Np 61.4 s %K=60 , %α=40 , %KSF=0.020
229Np 4.0 m %α > 50, %K < 50
230Np 4.6 m %K+%β+ < 97, %α > 3
231Np 48.8 m (5/2) %K=98 , %α=2
232Np 14.7 m (4+ ) %K+%β+=100
233Np 36.2 m (5/2+ ) %K=100, %α < 0.001
234Np 4.4 d (0+ ) %K+%β+=100
235Np 396.1 d 5/2+ %K=99.99740 , %α=0.00260
236Np 1.54e5 a (6-) %K=87.3 , %β-=12.5 , %α=0.16
236m1Np 22.5 h 1 %K=52 , %β-=48
237Np 2.144e+6 a 5/2+ %α=100, %SF < 2E-10
237m1Np 45 ns
238Np 2.117 d 2+ %β-=100
238m1Np 112 ns
239Np 2.3565 d 5/2+ %β-=100
240Np 61.9 m (5+) %β-=100
240m1Np 7.22 m 1(+) %β-=99.89 , %IT=0.11
241Np 13.9 m (5/2+ ) %β-=100
242Np 5.5 m (6) %β-=100
242m1Np 2.2 m (1+ ) %β-=100
243Np 1.8 m (5/2- ) %β-=100
244Np 2.29 m (7-) %β-=100

Plutonium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
228Pu 4 ms 0+ %α=100
229Pu %α=?
230Pu 0+ %α=?
231Pu
232Pu 34.1 m 0+ %K=77 , %α=23
233Pu 20.9 m %K+%β+=99.88 , %α=0.12
234Pu 8.8 h 0+ %K ~ 94, %α ~ 6
234m1Pu 3 ns
235Pu 25.3 m (5/2+ ) %K+%β+=99.9973 , %α=0.0027
235m1Pu 25 ns
236Pu 2.858 a 0+ %α=100, %SF=1.37E-7
236m1Pu 37 ps (0+ )
236m2Pu 34 ns
237Pu 45.2 d 7/2- %α=0.0042 , %K=99.9958
237m1Pu 0.18 s 1/2+ %IT=100
237m2Pu 85 ns
237m3Pu 1.1 μs
238Pu 87.7 a 0+ %α=100, %SF=1.85E-7 , %MG ~ 6E-15, %SI ~ 1.4E-14
238m1Pu 0.6 ns
238m2Pu 6.0 ns (0+ )
239Pu 24110 a 1/2+ %α=100, %SF=3.0E-10
239m1Pu 7.5 μs (5/2+ )
239m2Pu 2.6 ns (9/2- )
240Pu 6563 a 0+ %α=100 , %SF=5.75E-6
241Pu 14.35 a 5/2+ %β-=99.998, %α=0.00245 , %SF ~ 2.4E-14
241m1Pu 21 μs
241m2Pu 32 ns
242Pu 3.733e+5 a 0+ %α=100 , %SF=5.54E-4
243Pu 4.956 h 7/2+ %β-=100
243m1Pu 45 ns
244Pu 8.08e+7 a 0+ %α=99.879 , %SF=0.121 , %ββ < 3E-11
245Pu 10.5 h (9/2- ) %β-=100
245m1Pu 90 ns
246Pu 10.84 d 0+ %β-=100
247Pu 2.27 d %β-=100

Americium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
232Am 79 s %K ~ 98, %α ~ 2, %KSF=0.069
233Am
234Am 2.32 m %K=99.961 , %α=0.039 , %KSF=0.0066
235Am 15 m %K+%β+=?, %α=?
236Am %K=?, %α=?
237Am 73.0 m 5/2(-) %α=0.025 , %K=99.975
237m1Am 5 ns
238Am 98 m 1+ %K+%β+>99.99, %α=1.0E-4
238m1Am 35 μs
239Am 11.9 h (5/2)- %K=99.990 , %α=0.010
239m1Am 163 ns (7/2+ )
240Am 50.8 h (3-) %K=100, %α=1.9E-4
241Am 432.2 a 5/2- %α=100, %SF=4.3E-10
241m1Am 1.2 μs
242Am 16.02 h 1- %β-=82.7 , %K=17.3
242m1Am 141 a 5- %IT=99.541 , %α=0.459 , %SF < 4.7E-9
242m2Am 14.0 ms %SF=?, %IT=?
243Am 7370 a 5/2- %α=100, %SF=3.7E-9
243m1Am 5.5 μs
244Am 10.1 h (6-) %β-=100
244m1Am 26 m 1+ %β-=99.9639 , %K=0.0361
245Am 2.05 h (5/2)+ %β-=100
245m1Am 0.64 μs
246Am 39 m (7-) %β-=100
246m1Am 25.0 m 2(-) %β-=100, %IT<0.01
246m2Am 73 μs
247Am 23.0 m (5/2) %β-=100

Curium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
238Cm 2.4 h 0+ %K=96.16 , %α=3.84
239Cm 2.9 h (7/2- ) %K= 100, %α < 0.1
240Cm 27 d 0+ %α > 99.5 , %K < 0.5 , %SF=3.9E-6
241Cm 32.8 d 1/2+ %K=99.0 , %α=1.0
241m1Cm 15.3 ns
242Cm 162.8 d 0+ %α=100, %SF=6.37E-6
242m1Cm 40 ps
242m2Cm 0.18 μs
243Cm 29.1 a 5/2+ %α=99.71 , %K=0.29 , %SF=5.3E-9
243m1Cm 42 ns
244Cm 18.10 a 0+ %α=100, %SF=1.371E-4
244m1Cm 34 ms 6+ %IT=100, %SF < 7.7E-10
245Cm 8500 a 7/2+ %α=100, %SF=6.1E-7
245m1Cm 13.2 ns
246Cm 4730 a 0+ %α=99.9737 , %SF=0.0263
247Cm 1.56e+7 a 9/2- %α=100
248Cm 3.40e+5 a 0+ %α=91.61 , %SF=8.39
249Cm 64.15 m 1/2(+) %β-=100
250Cm 9000 a 0+ %SF ~ 86, %α ~ 8, %β- ~ 6
251Cm 16.8 m (1/2+ ) %β-=100
252Cm 2 d 0+ %β-=100

Berkelium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
238Bk 144 s %K+%β+=100, %KSF=0.048
239Bk (7/2+ )
240Bk 4.8 m %K+%β+=100, %KSF=1E-3 sys
241Bk (7/2+ )
242Bk 7.0 m %K+%β+=100
242m1Bk 9.5 ns
242m2Bk 0.60 μs
243Bk 4.5 h (3/2- ) %K ~ 99.85, %α ~ 0.15
243m1Bk 5 ns
244Bk 4.35 h (1- ) %K=99.994 , %α=0.006
245Bk 4.94 d 3/2- %K=99.88 , %α=0.12
245m1Bk 2 ns
246Bk 1.80 d 2(-) %K=100, %α<0.2 sys
247Bk 1380 a (3/2- ) %α < 100
248Bk 9 a (6+) %α>70
248m1Bk 23.7 h 1(-) %β-=70 , %K=30 , %α<0.001
249Bk 320 d 7/2+ %β-=99.99855 , %α=0.00145 , %SF=4.76E-8
250Bk 3.217 h 2- %β-=100
251Bk 55.6 m (3/2- ) %β-=100, %α ~ 1E-5

Californium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
237Cf 2.1 s %SF ~ 10 sys
238Cf 21 ms 0+ %SF ~ 100 sys
239Cf 39 s %α=?
240Cf 1.06 m 0+ %α=87 , %SF ~ 13
241Cf 3.78 m %K ~ 75, %α ~ 25
242Cf 3.49 m 0+ %α=65 , %SF < 1.4E-2
243Cf 10.7 m (1/2+ ) %K ~ 86, %α ~ 14
244Cf 19.4 m 0+ %α=70
245Cf 45.0 m (5/2+ ) %K=64 , %α=36
246Cf 35.7 h 0+ %α=99.9996 , %SF=2.3E-4 , %K<5E-4
246m1Cf 45 ns
247Cf 3.11 h (7/2+ ) %K=99.965 , %α=0.035
248Cf 333.5 d 0+ %α=99.9971 , %SF=0.0029
249Cf 351 a 9/2- %α=100, %SF=4.4E-7
250Cf 13.08 a 0+ %α=99.923 , %SF=0.077
251Cf 898 a 1/2+ %α=100
252Cf 2.645 a 0+ %α=96.908 , %SF=3.092
253Cf 17.81 d (7/2+ ) %β-=99.69 , %α=0.31
254Cf 60.5 d 0+ %SF=99.69 , %α=0.31
255Cf 85 m (9/2+ ) %β-=100
256Cf 12.3 m 0+ %SF=100, %β-<1 sys %α ~ 1E-6 sys

Einsteinium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
241Es 9 s %α=100
242Es 40 s %α ~ 100, %KSF=1.4
243Es 21 s %K < 70, %α > 30
244Es 37 s %K=96 , %α=4 , %KSF=0.01 sys
245Es 1.1 m (3/2- ) %K=60 , %α=40
246Es 7.7 m (4-,6+) %K=90.1 , %α=9.9 , %KSF=0.003 sys
247Es 4.55 m (7/2+ ) %K ~ 93, %α ~ 7
248Es 27 m (2-,0+ ) %K>99, %α ~ 0.25, %KSF=3E-5 sys
249Es 102.2 m 7/2(+) %K=99.43 , %α=0.57
250Es 8.6 h (6+) %K > 97, %α < 3 sys
250m1Es 2.22 h 1(-) %K > 99, %α < 1 sys
251Es 33 h (3/2- ) %K=99.51 , %α=0.49
252Es 471.7 d (5-) %α=76 , %K=24 , %β- ~ 0.01
253Es 20.47 d 7/2+ %α=100, %SF=8.9E-6
254Es 275.7 d (7+) %α=100, %K<1E-4, %β-=1.74E-6 , %SF<3E-6
254m1Es 39.3 h 2+ %β-=98 , %α=0.33 , %IT<3, %K=0.078 , %SF<0.045
255Es 39.8 d (7/2+ ) %β-=92.0 , %α=8.0 , %SF=0.0045
256Es 25.4 m (1+ ) %β-=100
256m1Es 7.6 h (8+) %β- ~ 100, %β-SF=0.002

Fermium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
242Fm 0.8 ms 0+ %SF=100
243Fm 0.18 s %α < 100, %SF < 0.5, %K=?
244Fm 3.3 ms 0+ %SF=100
245Fm 4.2 s %α=100, %SF < 0.11
246Fm 1.1 s 0+ %α=92 , %SF=7.3 , %K<1 sys
247Fm 35 s %α > 50, %K+%β+ < 50
247m1Fm 9.2 s %α < 100
248Fm 36 s 0+ %α=93 , %K ~ 7, %SF=0.10
249Fm 2.6 m (7/2+ ) %K ~ 85 sys %α ~ 15 sys
250Fm 30 m 0+ %α>90, %K<10, %SF=0.0069
250m1Fm 1.8 s %IT>80, %SF < 8E-5
251Fm 5.30 h (9/2- ) %K=98.20 , %α=1.80
252Fm 25.39 h 0+ %α=99.9977 , %SF=0.00232
253Fm 3.00 d 1/2+ %K=88 , %α=12
254Fm 3.240 h 0+ %α=99.9408 , %SF=0.0592
255Fm 20.07 h 7/2+ %α=100, %SF=2.3E-5
256Fm 157.6 m 0+ %SF=91.9 , %α=8.1
257Fm 100.5 d (9/2+ ) %α=99.790 , %SF=0.210
258Fm 370 μs 0+ %SF=100
259Fm 1.5 s %SF=100

Mendelevium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
245Md 0.35 s (7/2) %α=100
245m1Md 0.90 ms (1/2- )
246Md 1.0 s %α=100
247Md 1.12 s %α=80 , %SF=20
248Md 7 s %K=80 , %α=20 , %SF < 0.05
249Md 24 s %K=80 , %α=20
250Md 52 s %K=93 , %α=7 , %KSF=0.02 sys
251Md 4.0 m %K > 90, %α < 10
252Md 2.3 m %K>50, %α<50
253Md 6 m %K+%β+=100
254Md 10 m %K < 100
254m1Md 28 m %K < 100
255Md 27 m (7/2- ) %K=92 , %α=8 , %SF < 1.4
256Md 78.1 m (0-,1- ) %K=90.7 , %α=9.3 , %SF < 2.8
257Md 5.52 h (7/2- ) %K=85 , %α=15 , %SF<1
258Md 51.5 d (8-) %α=100, %SF < 0.003, %β- < 0.003, %K < 0.003
258m1Md 57.0 m (1- ) %K > 70, %SF < 30, %α < 1.2, %β- < 30
259Md 96 m (7/2- ) %SF ~ 100, %α<1.3
260Md 31.8 d %SF>73, %α < 25, %β- < 10

Nobelium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
250No 0.25 ms 0+ %SF=100, %α ~ 0.05 sys
251No 0.8 s %α ~ 100, %K ~ 1 sys%SF < 8
252No 2.30 s 0+ %α=73.1 , %SF=26.9
253No 1.7 m (9/2- ) %α ~ 80, %K ~ 20 sys
254No 55 s 0+ %α=90 , %K=10 , %SF=0.17
254m1No 0.28 s %IT>80
255No 3.1 m (1/2+ ) %α=61.4 , %K=38.6
256No 2.91 s 0+ %α=99.5 , %SF=0.53 +8-4
257No 25 s (7/2+ ) %α ~ 100
258No 1.2 ms 0+ %SF=100, %α ~ 1E-3 sys
259No 58 m (9/2+ ) %α=75 , %K=25 , %SF<10
260No 106 ms 0+ %SF=100
261No
262No 5 ms 0+ %SF=?

Lawrencium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
253Lr 1.3 s %α=98 , %K ~ 1 sys%SF < 1
254Lr 13 s %α=78 , %K=22 , %SF < 0.16
255Lr 22 s %α=85 , %K<30, %SF<0.10
256Lr 28 s %α>80, %K<20, %SF<0.026
257Lr 0.646 s (9/2+ ) %α=100, %SF < 6.5E-4
258Lr 3.9 s %α>95, %K<5, %SF < 5.0
259Lr 6.3 s %α=77 , %SF=23 , %K<0.5
260Lr 180 s %α=75 , %K=25
261Lr 39 m %SF < 100
262Lr 216 m %SF<10


Rutherfordium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
253Rf 1.8 s %SF ~ 50, %α ~ 50
253m1Rf 50 μs
254Rf 0.5 ms 0+ %SF=100, %α ~ 0.3 sys
254m1Rf 23 μs
255Rf 1.5 s (9/2- ) %SF=52 , %α=48
256Rf 6.7 ms 0+ %SF=98 +2- 7 , %α=2.2 +73-18
257Rf 4.7 s (7/2+ ) %α=79.6 , %K=18 , %SF=2.4
258Rf 12 ms 0+ %SF ~ 87, %α ~ 13
259Rf 3.1 s %α=93 , %SF=7 , %K ~ 0.3
260Rf 20.1 ms 0+ %SF=100
261Rf 65 s %α>80, %SF<10, %K < 10 sys
262Rf 2.1 s 0+ %SF=100
262m1Rf 47 ms [2+ ]

Dubnium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
255Db 1.6 s %α>47, %SF < 53
256Db 2.6 s %SF < 40, %α ~ 70, %K ~ 10 sys
257Db 1.3 s %α=82 , %SF=17 , %K=1 sys
258Db 4.4 s %α=67 +5-9 , %K=33 +9-5, %SF<34
258m1Db 20 s %K ~ 100
259Db
260Db 1.52 s %α > 90.4 , %SF ~ 9.6 , %K<2.5
261Db 1.8 s %α>50, %SF<50
262Db 34 s %α ~ 64, %SF ~ 33, %K ~ 3 sys
263Db 27 s %SF=57 , %α=43

Seaborgium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
258Sg 2.9 ms 0+ %SF=100
259Sg 0.48 s (1/2+ ) %α=90 , %SF < 20
260Sg 3.6 ms 0+ %α=50 +30-20 , %SF=50 +20-30
261Sg 0.23 s %α=95 , %SF<10
262Sg 0+
263Sg 0.8 s %SF ~ 70, %α ~ 30
263m1Sg 0.31 s [9/2+]
264Sg 0+
265Sg 10 s [1/2+ ] %α>50, %SF<50
266Sg 21 s 0+ %α=50 , %SF=50

Bohrium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
261Bh 11.8 ms %α=95 , %SF<10
262Bh 102 ms %α > 80, %SF < 20
262m1Bh 8.0 ms %α > 70, %SF < 30
263Bh
264Bh 0.44 s %α=100

Hassium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
264Hs 0.85 ms 0+ %α ~ 100, %SF < 1.5
265Hs 0.9 ms %α=?
265m1Hs 1.55 ms [1/2+ ] %α ~ 100, %SF<9
266Hs 0+
267Hs 26 ms [9/2+ ] %α=100
268Hs 0+
269Hs 9 s [3/2+ ] %α=100

Meitnerium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
266Mt 0.8 ms %α=100
266m1Mt 3.8 ms %α=100, %SF < 5.5
267Mt
268Mt 0.07 s [5+,6+] %α=100

Darmstadtium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
267Ds 3 μs [11/2- ] %α=100
268Ds 0+
269Ds 0.17 ms [1/2+ ] %α=100
270Ds 0+
271Ds 0.06 s [3/2+ ] %α=100
271m1Ds 1.1 ms [9/2+ ] %α=100
272Ds 0+
273Ds 0.18 ms [3/2+ ] %α=100
273m1Ds 120 ms [13/2- ] %α=100

Roentgenium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
272Rg 1.5 ms [5+,6+] %α=100


Copernicium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
277Cn 0.24 ms [3/2+ ]

Flerovium

edit
Isotope Half-life Spin Parity Mode(s) or Abundance
285Fl 0.58 ms %α=?