Introduction
Welcome to Modern Physics. This book has a lot of information, but it also needs a lot of work. Feel free to read all the material that we have, and edit the material that needs editing. If you want to do a lot of work on this book, it is recommended that you read the note for contributors .
Who This Book is For
edit
This book is for an introductory undergraduate study of calculus-based physics. The material covered in this book frequently is spread out over two or three semesters in an average undergraduate curriculum, if not more. This book will rely heavily on Calculus , including differential and integral calculus, multivariable calculus, and differential equations. Also, some topics of Linear Algebra will be considered and utilized. Students without the necessary background in mathematics will have a difficult time reading and following the material.
What This Book Will Cover
edit
This book will cover the topic of waves first, because they are a predominant part of modern physical theory. Next, this book will cover the basics of motion. Next, the theory of Special Relativity and Quantum Mechanics are introduced. In the later sections, we cover a number of disjointed topics, including Gravity, Electromagnetism, Fluid dynamics, Thermodynamics, and Nuclear Physics. Additional topics may be added later, as needed. Many of the sections in this book are incomplete, and many pages are stubs. Readers are encouraged to help expand sections that need help.
Where To Go From Here
edit
At the present time, there are no materials on Wikibooks that cover material that is more advanced than this. More material on future subjects may be added, however.
For Contributors
This page is going to be a brief introduction to editing this book, as well as a general style guide for new contributors.
A Radically Modern Approach to Introductory Physics
edit
This book was published under the GFDL, and is a good resource. Since it is under the GFDL, material can be harvested from it, and adapted for this wikibook:
This textbook aims to cover every aspect of modern physics at an undergraduate level in such a manner that anyone who is literate, and not frightened of math, should be able to understand and use it. It can be used to add new material to the Modern Physics book.
Navigation Templates
edit
The following template was created for this book, to provide a standardized navigational system.
Sections can also be altered to have their own navigational templates, as needed.
Some pages are stubs, and new pages may become stubs. To ensure that stubs are found and expanded, they should be marked. To mark a stub, you should use the following template:
This will put a little notice in the section that it is a stub, and will add the page to the following category:
All current stub pages are listed in that category, and new users should become familiar with it.
All pages and templates in this book should belong to the following category:
The navigation templates automatically add a page to this category, so any page that doesn't have an appropriate navigation template won't be included in this category. Templates can be added to this category manually.
Contributors can list themselves on the Modern Physics main talk page , or they can list themselves on this talk page . Contributors should not list their names on any module pages, nor should they sign their contributions on the module pages. Such signatures or name lists will be deleted.
Page List
This is a page listing for the Modern Physics book. Entries in italics are redirects and can probably be deleted.
Annus Mirabilis of Albert Einstein
The term "Annus Mirabilis" is Latin for "Miracle Year," and it refers to the year 1905 when Albert Einstein, a relatively unknown physicist at the time, published four groundbreaking papers in the field of theoretical physics. These papers had a profound and lasting impact on our understanding of the fundamental laws of the universe and marked a turning point in the history of science. Here are the four papers that make up Einstein's Annus Mirabilis:
Special Theory of Relativity: In this paper, titled "On the Electrodynamics of Moving Bodies," Einstein introduced his special theory of relativity. He presented the theory's two key postulates: the principle of relativity (physical laws are the same for observers in non-accelerated motion) and the constancy of the speed of light in a vacuum for all observers. From these postulates, he derived the famous equation E=mc², which relates energy (E) to mass (m) and the speed of light (c). Special relativity revolutionized our understanding of space, time, and energy.
Photoelectric Effect: In the paper "On a Heuristic Point of View Concerning the Production and Transformation of Light," Einstein explained the photoelectric effect, in which light shining on a material causes it to emit electrons. He proposed that light consists of discrete packets of energy called photons, and the energy of each photon is proportional to its frequency. This paper provided strong evidence for the quantum nature of light, which was a departure from classical wave theory.
Brownian Motion: Einstein's paper "On the Movement of Small Particles Suspended in a Stationary Liquid as Required by the Molecular Kinetic Theory of Heat" addressed the random motion of small particles suspended in a liquid, known as Brownian motion. He showed that the motion could be explained by the kinetic theory of gases and provided experimental predictions that could be tested. This work provided further evidence for the existence of atoms and molecules.
Mass-Energy Equivalence: In a short paper titled "Does the Inertia of a Body Depend upon its Energy Content?" Einstein explored the concept of mass-energy equivalence, which was later expressed in the famous equation E=mc². He proposed that the mass of an object is equivalent to its energy content, suggesting that mass can be converted into energy and vice versa. This concept laid the foundation for nuclear physics and the understanding of nuclear reactions.
Einstein's papers from 1905 were published in the journal "Annalen der Physik" (Annals of Physics) and had a profound impact on the scientific community. They fundamentally reshaped our understanding of the physical world and paved the way for later developments in modern physics, including the theory of general relativity and quantum mechanics. Einstein's work during his Annus Mirabilis marked him as one of the most influential physicists of the 20th century and earned him the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.
Special Theory of Relativity
edit
The Special Theory of Relativity, often simply referred to as the Theory of Relativity, is a fundamental theory in physics developed by Albert Einstein in 1905. This groundbreaking theory transformed our understanding of space, time, and the relationship between matter and energy. It consists of two main postulates and has had a profound impact on many areas of science and technology. Here are the key principles and implications of the Special Theory of Relativity:
Postulate 1 - The Principle of Relativity :
The laws of physics are the same for all observers, regardless of their motion.
This principle implies that there is no "absolute" state of rest or motion in the universe. The laws of physics remain consistent for observers in both uniform motion and at rest.
Postulate 2 - The Speed of Light :
The speed of light in a vacuum, denoted as "c," is the same for all observers, regardless of their relative motion.
This postulate implies that the speed of light is a universal constant, approximately equal to 299,792,458 meters per second (or about 186,282 miles per second).
Key Implications and Concepts of the Special Theory of Relativity:
Time Dilation :
According to the theory, time is relative and depends on the observer's motion. An observer in motion relative to another will perceive time passing more slowly. This effect is known as time dilation.
The famous equation associated with time dilation is:
Δ
t
′
=
Δ
t
1
−
v
2
c
2
{\displaystyle \Delta t'={\frac {\Delta t}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}
Time dilation has been experimentally confirmed in particle accelerators and other high-speed experiments.
Length Contraction :
Objects in motion appear to contract along their direction of motion from the perspective of a stationary observer. This phenomenon is known as length contraction.
The equation for length contraction is:
L
′
=
L
1
−
v
2
c
2
{\displaystyle L'={\frac {L}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}
Relativistic Mass :
As an object's velocity approaches the speed of light, its relativistic mass increases according to the equation:
m
=
m
0
1
−
v
2
c
2
{\displaystyle m={\frac {m_{0}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}
, where
m
{\displaystyle m}
is the relativistic mass,
m
0
{\displaystyle m_{0}}
is the rest mass,
v
{\displaystyle v}
is the velocity, and
c
{\displaystyle c}
is the speed of light.
This concept highlights that as an object accelerates, it becomes more massive and requires more energy to continue accelerating.
E=mc² - Mass-Energy Equivalence :
Einstein's famous equation,
E
=
m
c
2
{\displaystyle E=mc^{2}}
, states that mass and energy are interchangeable. It means that mass can be converted into energy and vice versa.
This principle underlies nuclear reactions, such as those occurring in the sun, nuclear power plants, and atomic bombs.
Relativity of Simultaneity :
In special relativity, events that are simultaneous in one frame of reference may not be simultaneous in another frame of reference moving at a relative velocity.
This leads to the conclusion that there is no universal "now" across all frames of reference.
Lorentz Transformation :
The Lorentz transformation equations are mathematical formulas that relate space and time coordinates between two relatively moving observers. They describe how measurements of length, time, and other quantities differ between inertial frames.
Causality and the Speed of Light Limit :
The theory upholds causality, meaning that cause and effect relationships cannot be violated. No information, matter, or influence can travel faster than the speed of light.
The Special Theory of Relativity has been rigorously tested and confirmed through numerous experiments and observations. It has far-reaching implications for our understanding of the physical universe and has played a pivotal role in the development of modern physics, including the theory of general relativity, which extends these principles to include gravitation. Special relativity has also influenced technology, particularly in the design of high-speed particle accelerators and the development of the Global Positioning System (GPS).
Photoelectric Effect
edit
The photoelectric effect is a phenomenon in physics where electrons are emitted from a material when it is exposed to electromagnetic radiation, typically in the form of visible or ultraviolet light. This effect was one of the key pieces of experimental evidence that contributed to the development of quantum mechanics and the understanding of the dual nature of light.
Here are the main features and principles of the photoelectric effect:
Emission of Electrons : When electromagnetic radiation, such as light, is incident on a material surface, it can cause the emission of electrons from that material. These emitted electrons are called photoelectrons.
Quantized Energy : The photoelectric effect provided experimental evidence for the quantization of energy, a fundamental concept in quantum mechanics. Electrons in a material are bound by discrete energy levels, and to be emitted, an electron must absorb a photon (a particle of light) with energy equal to or greater than the energy required to overcome the binding energy of the electron.
Threshold Frequency : There is a minimum frequency of incident light, called the threshold frequency (
f
threshold
{\displaystyle f_{\text{threshold}}}
), below which no photoelectrons are emitted, regardless of the intensity (brightness) of the light. Photoelectron emission only occurs when the frequency of the incident light exceeds this threshold.
Einstein's Explanation : Albert Einstein provided a theoretical explanation of the photoelectric effect in 1905. He proposed that light is composed of discrete packets of energy called photons. When a photon is absorbed by an electron in the material, it imparts its energy to the electron, allowing it to overcome the binding energy and escape the material's surface as a photoelectron. The energy of a photon (
E
{\displaystyle E}
) is directly proportional to its frequency (
f
{\displaystyle f}
), as given by the equation
E
=
h
f
{\displaystyle E=hf}
, where
h
{\displaystyle h}
is Planck's constant.
Intensity and Electron Kinetic Energy : Increasing the intensity of the incident light (the number of photons per unit time) results in more photoelectrons being emitted, but it does not affect their maximum kinetic energy. The maximum kinetic energy of the emitted photoelectrons depends only on the frequency of the incident light and is given by the equation
K
.
E
max
=
h
f
−
ϕ
{\displaystyle K.E_{\text{max}}=hf-\phi }
, where
ϕ
{\displaystyle \phi }
is the work function, representing the minimum energy required to remove an electron from the material.
Wave-Particle Duality : The photoelectric effect is a clear example of the wave-particle duality of light. Although light is typically described as a wave, the photoelectric effect demonstrates its particle-like behavior, where photons of discrete energy interact with electrons in a quantized manner.
The photoelectric effect has practical applications in devices like photodetectors and photovoltaic cells (solar cells) and has been crucial in developing our understanding of quantum mechanics and the fundamental nature of light. It played a significant role in the development of the concept of quantization of energy and contributed to Albert Einstein receiving the Nobel Prize in Physics in 1921.
Brownian motion, also known as Brownian movement or pedesis, is the random and continuous motion of microscopic particles suspended in a fluid (liquid or gas) resulting from their collision with fast-moving atoms or molecules in the surrounding medium. This phenomenon was first observed and explained by the Scottish scientist Robert Brown in 1827, although it wasn't fully understood until Albert Einstein provided a theoretical explanation in 1905, which helped establish the concept of atoms and molecules.
Key characteristics and principles of Brownian motion include:
Random Motion : Brownian motion is characterized by the erratic, zigzagging, and unpredictable paths taken by the particles. The motion appears to be chaotic because it results from the cumulative effect of countless collisions with much smaller, faster-moving particles (atoms or molecules) in the fluid.
Microscopic Scale : Brownian motion is most noticeable at microscopic scales, such as when observing tiny particles like pollen grains, dust, or colloidal particles suspended in a liquid. At macroscopic scales, the effects of Brownian motion are not typically observable.
Continuous Nature : Brownian motion is a continuous, ongoing process. It continues as long as the particles are suspended in the fluid and there are thermal fluctuations (random movements) of the surrounding molecules.
Thermal Motion : Brownian motion is driven by thermal energy. The fast, random motion of the surrounding fluid molecules is a manifestation of their thermal energy. When these fast-moving molecules collide with the suspended particles, they impart momentum, causing the particles to move randomly.
Einstein's Explanation : Albert Einstein's 1905 paper on the theory of Brownian motion provided a mathematical explanation for this phenomenon, which supported the idea that matter is composed of discrete atoms and molecules. Einstein's equations describe the mean square displacement of a Brownian particle over time.
Diffusion : Brownian motion is related to the process of diffusion, where particles tend to move from regions of higher concentration to regions of lower concentration. Diffusion is the net result of the random motion of particles due to Brownian motion.
Applications : Brownian motion has numerous practical applications and implications in various fields, including physics, chemistry, biology, and engineering. It is used to explain phenomena such as the diffusion of molecules in gases and liquids, the behavior of colloids, and the motion of small particles in biological systems.
Statistical Properties : Brownian motion is often analyzed statistically. The mean square displacement of a particle over time follows a linear relationship with time, and this relationship is used to determine diffusion coefficients and other properties of the suspended particles.
Brownian Motion Simulations : Computer simulations and models of Brownian motion have been developed to study the behavior of particles in complex systems. These simulations have applications in areas like materials science and drug delivery.
In summary, Brownian motion is a fundamental phenomenon that occurs at the microscopic scale and results from the continuous, random motion of particles suspended in a fluid. It has played a crucial role in our understanding of the kinetic theory of matter and the behavior of atoms and molecules in gases and liquids.
Mass-Energy Equivalence
edit
Mass-energy equivalence is a fundamental principle in physics that describes the relationship between mass and energy. This concept is most famously encapsulated by Albert Einstein's equation,
E
=
m
c
2
{\displaystyle E=mc^{2}}
, which states that energy (
E
{\displaystyle E}
) is equal to mass (
m
{\displaystyle m}
) times the speed of light (
c
{\displaystyle c}
) squared. Here are key points about mass-energy equivalence:
The Equation
E
=
m
c
2
{\displaystyle E=mc^{2}}
:
The equation
E
=
m
c
2
{\displaystyle E=mc^{2}}
is one of the most famous equations in physics, and it relates mass and energy. It asserts that a given amount of mass can be converted into a corresponding amount of energy and vice versa.
E
{\displaystyle E}
represents energy in joules (J),
m
{\displaystyle m}
represents mass in kilograms (kg), and
c
{\displaystyle c}
represents the speed of light in a vacuum, approximately
3
×
10
8
{\displaystyle 3\times 10^{8}}
meters per second (m/s).
Origin :
Albert Einstein proposed the mass-energy equivalence principle in his special theory of relativity, which was published in 1905. This theory revolutionized physics by demonstrating that mass and energy are interconnected.
Consequences :
The mass-energy equivalence principle has profound consequences. It implies that mass is a form of energy, and any mass can be converted into energy and released in various processes, such as nuclear reactions.
Conversely, energy can be converted into mass, as observed in particle accelerators where high-energy collisions can create new particles with mass.
Nuclear Reactions :
The most famous application of mass-energy equivalence is in nuclear reactions, such as those occurring in the sun and nuclear power plants. In these reactions, a small amount of mass is converted into a large amount of energy, as described by
E
=
m
c
2
{\displaystyle E=mc^{2}}
.
The energy released in nuclear reactions is harnessed for electricity generation and other applications.
Atomic Bombs :
The destructive power of atomic bombs is a result of mass-energy equivalence. In nuclear explosions, a small amount of nuclear material undergoes a chain reaction, releasing a massive amount of energy as the mass is converted into energy.
Particle Physics :
Particle accelerators, like the Large Hadron Collider (LHC), accelerate particles to high speeds and collide them to study fundamental particles and their interactions. These experiments take advantage of mass-energy equivalence to create and study particles.
Cosmological Implications :
Mass-energy equivalence also has implications for cosmology and the study of the universe's early moments, particularly during the Big Bang. It helps explain how particles and radiation behaved in the early universe.
Practical Applications :
Mass-energy equivalence is applied in technologies like positron emission tomography (PET) scanners, where antimatter annihilation reactions are used to produce gamma rays for medical imaging.
In summary, mass-energy equivalence is a fundamental concept in physics that shows that mass and energy are interchangeable. It is a cornerstone of modern physics and has numerous practical applications in energy production, nuclear physics, and particle physics. Albert Einstein's equation,
E
=
m
c
2
{\displaystyle E=mc^{2}}
, succinctly captures this profound relationship.
Gravity
Space Physics
Space physics, also known as space plasma physics or astrophysical plasma physics, is a branch of space science and physics that focuses on the study of charged particles and electromagnetic fields in space environments. It seeks to understand the behavior of plasmas (ionized gases) and the physical processes that occur in space, ranging from the Earth's magnetosphere to the broader universe. Here are key aspects of space physics:
Plasma in Space: Space is filled with plasmas, which consist of charged particles (ions and electrons) that interact with electromagnetic fields. These plasmas can be found in various space environments, including the solar wind, planetary magnetospheres, and interstellar and intergalactic space.
Solar-Terrestrial Physics: A significant portion of space physics is devoted to studying the interaction between the solar wind (a stream of charged particles from the Sun) and the Earth's magnetic field. This interaction gives rise to phenomena such as geomagnetic storms, auroras, and the Van Allen radiation belts.
Magnetospheres: Space physics investigates the magnetospheres of planets and celestial bodies. These protective magnetic fields influence the behavior of charged particles in space and play a crucial role in shielding planets from harmful solar and cosmic radiation.
Space Weather: Space physicists study space weather, which includes the conditions in space that can affect technology and systems on Earth and in space. Space weather phenomena include solar flares, coronal mass ejections, and their impact on satellite communications, navigation systems, and power grids.
Astrophysical Plasmas: Beyond our solar system, space physics explores the behavior of plasmas in astrophysical environments. This includes the study of accretion disks around black holes, the interstellar medium, and the behavior of plasmas in galaxies and galaxy clusters.
Cosmic Rays: Space physics investigates cosmic rays, which are high-energy charged particles originating from various sources in the universe, including the Sun and distant astrophysical phenomena. Understanding cosmic rays can provide insights into astrophysical processes.
Satellite Missions: Space physicists often utilize space-based observatories and satellite missions to collect data and conduct experiments in space. These missions enable the direct measurement of space plasmas, electromagnetic fields, and other space phenomena.
Numerical Modeling: Numerical simulations and computer modeling play a significant role in space physics. Researchers use mathematical models to simulate the behavior of plasmas and electromagnetic fields in various space environments, helping to predict and understand complex space phenomena.
Interdisciplinary Field: Space physics is highly interdisciplinary, involving elements of plasma physics, astrophysics, magnetohydrodynamics (MHD), and geophysics. Researchers collaborate across disciplines to address complex questions related to space and plasma physics.
Scientific Questions: Key scientific questions in space physics include understanding the origin and evolution of planetary magnetospheres, the acceleration of charged particles in space, the dynamics of solar and astrophysical plasmas, and the impact of space weather on human activities and technology.
Space physics is a dynamic field that continues to advance our understanding of the complex and interconnected processes that occur in space environments. It has practical applications in space exploration, satellite technology, and space weather prediction, contributing to our ability to navigate and utilize space resources effectively.
Constants
Table of nuclides
{split}
A table with the basic properties of all nuclides.
Legend
α
Alpha decay
β-
Beta decay
β+
Positron emission
K+
Electron capture
IT
Internal conversion
SF
Spontaneous fission
p
Proton emission
n
Neutron emission
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
0n
614.6s
1/2+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
1H
stable
1/2+
%Abundance=99.985
2H
stable
1+
%Abundance=0.015
3H
12.33 a
1/2+
%β-=100
4H
2-
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
3He
stable
1/2+
%Abundance=0.000137
4He
stable
0+
%Abundance=99.999863
5He
0.60 MeV
3/2-
%n=100
6He
806.7 ms
0+
%β-=100
7He
160 keV
(3/2)-
%n=100
8He
119.0 ms
0+
%β-=100, %β-n=16
9He
0.30 MeV
(1/2-)
%n=100
10He
0.3 MeV
0+
%n=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
4Li
2-
5Li
1.5 MeV
3/2-
%p=100
6Li
stable 1+
1+
%Abundance=7.5
7Li
stable
3/2-
%Abundance=92.5
8Li
838 ms
2+
%β-=100, %β-2α=100
9Li
178.3 ms
3/2-
%β-=100, %β-n2α=49.5
10Li
1.2 MeV
%n=100
11Li
8.5 ms
3/2-
%β-=100, %β-n=85 , %β-2n=4.1 , %β-2α3n=1.9
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
6Be
92 keV
0+
%2pα=100
7Be
53.12 d
3/2-
%K=100
8Be
6.8 eV
0+
%2α=100
9Be
stable 3/2-
3/2-
%Abundance=100
10Be
1510000 a
0+
%β-=100
11Be
13.81 s
1/2+
%β-=100, %β-α=3.1
12Be
23.6 ms
0+
%β-=100
13Be
0.9 MeV
(1/2,5/2)+
%n=100
14 Be
4.35 ms
0+
%β-=100, %β-n=81 , %β-2n=5
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
7B
1.4 MeV
(3/2-)
%XP=100
8B
770 ms
2+
%K+%β+=100, %K2α=100
9B
0.54 keV
3/2-
%2αP=100
10B
stable
3+
%Abundance=19.9
11B
stable
3/2-
%Abundance=80.1
12B
20.20 ms
1+
%β-=100, %β-3α=1.58
13B
17.36 ms
3/2-
%β-=100, %β-n=0.28
14B
13.8 ms
2-
%β-=100
15B
10.5 ms
%β-=100
16B
200 ps
(0-)
%n=100
17B
5.08 ms
(3/2-)
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
8C
230 keV
0+
%Xp=100
9C
126,5 ms
(3/2-)
%K+%β+=100, %Kp2α=?
10C
19.255 s
0+
%K+%β+=100
11C
20.39 m
3/2-
%K+%β+=100
12C
stable
0+
%Abundance=98.90
13C
stable
1/2-
%Abundance=1.10
14C
5730 a
0+
%β-=100
15C
2.449 s
1/2+
%β-=100
16C
0.747 s
0+
%β-=100, %β-n > 98.8
17C
0.193 s
%β-=100, %β-n=32
18C
0.095 s
0+
%β-=100, %β-n ~ 25
19C
0.046 s
%β-=100, %β-n=47
20C
0.014 s
0+
%β-=100, %β-n=72
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
11N
740 keV
1/2+
%p=?
12N
11.000 ms
1+
%K+%β+=100, %K3α=3.5
13N
9.965 m
1/2-
%K+%β+=100
14N
stable
1+
%Abundance=99.634
15N
stable
1/2-
%Abundance=0.366
16N
7.13 s
2-
%β-=100, %β-α=0.00120
17N
4.173 s
1/2-
%β-=100, %β-n=95.1
18N
624 ms
1-
%β-=100, %β-α=12.2 , %β-n=14.3
19N
0.304 s
(1/2-)
%β-=100, %β-n=62.4
20N
100 ms
%β-=100, %β-n ~ 61
21N
85 ms
%β-=100, %β-n=84
22N
24 ms
%β-=100, %β-n=35
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
12O
0.40 MeV
0+
%2p=60
13O
8.58 ms
(3/2-)
%K+%β+=100, %Kp=12
14O
70.606 s
0+
%K+%β+=100
15O
122.24 s
1/2-
%K+%β+=100
16O
stable
0+
%Abundance=99.762
17O
stable
5/2+
%Abundance=0.038
18O
stable
0+
%Abundance=0.200
19O
26.91 s
5/2+
%β-=100
20O
13.51 s
0+
%β-=100
21O
3.42 s
(1/2,3/2,5/2)+
%β-=100
22O
2.25 s
0+
%β-=100
23O
82 ms
%β-=100, %β-n=31
24O
61 ms
0+
%β-=100, %β-n=58
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
14
{\displaystyle {}^{14}}
F
(2-)
%p=100
15
{\displaystyle {}^{15}}
F
1.0 MeV
(1/2+)
%p=100
16
{\displaystyle {}^{16}}
F
40 keV
0-
%p=100
17
{\displaystyle {}^{17}}
F
64.49 s
5/2+
%K+%β+=100
18
{\displaystyle {}^{18}}
F
109.77 m
1+
%K+%β+=100
19
{\displaystyle {}^{19}}
F
stable
1/2+
%Abundance=100
20
{\displaystyle {}^{20}}
F
11.00 s
2+
%β-=100
21
{\displaystyle {}^{21}}
F
4.158 s
5/2+
%β-=100
22
{\displaystyle {}^{22}}
F
4.23 s
4+,(3+)
%β-=100
23
{\displaystyle {}^{23}}
F
2.23 s
(3/2,5/2)+
%β-=100
24
{\displaystyle {}^{24}}
F
0.34 s
(1,2,3)+
%β-=100
25
{\displaystyle {}^{25}}
F
59 ms
uo
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
16Ne
122 keV
0+
%2p=100
17Ne
109.2 ms
1/2-
%K+%β+=100, %Kp=95.8 , %Kα=2.7
18Ne
1672 ms
0+
%K+%β+=100
19Ne
17.22 s
1/2+
%K+%β+=100
20Ne
stable
0+
%Abundance=90.48
21Ne
stable
3/2+
%Abundance=0.27
22Ne
stable
0+
%Abundance=9.25
23Ne
37.24 s
5/2+
%β-=100
24Ne
3.38 m
0+
%β-=100
25Ne
602 ms
(1/2,3/2)+
%β-=100
26Ne
197 ms
0+
%β-=100, %β-n=0.13
27Ne
32 ms
%β-=100, %β-n=2.0
28Ne
17 ms
0+
%β-=100, %β-n=22
29Ne
0.2 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
19Na
%p=?
20Na
447.9 ms
2+
%K+%β+=100, %Kα=20.5
21Na
22.49 s
3/2+
%K+%β+=100
22Na
2.6019 a
3+
%K+%β+=100
23Na
stable
3/2+
%Abundance=100
24Na
14.9590 s
4+
%β-=100
24m1Na
20.20 ms
1+
%IT=99.95, %β-=0.05
25Na
59.1 s
5/2+
%β-=100
26Na
1.072 s
3+
%β-=100
27Na
301 ms
5/2+
%β-=100 , %β-n=0.13
28Na
30.5 ms
1+
%β-=100 , %β-n=0.58
29Na
44.9 ms
3/2
%β-=100 , %β-n=21.5
30Na
48 ms
2+
%β-=100 , %β-n=30 , %β-2n=1.17 , %β-α=5.5E-5
31Na
17.0 ms
3/2+
%β-=100, %β-n=37 , %β-2n=0.9
32Na
13.2 ms
(3-,4-)
%β-=100 , %β-n=24 , %β-2n=8.3
33Na
8.2 ms
%β-=100, %β-n=52 , %β-2n=12
34Na
5.5 ms
%β-=100, %β-n=?, %β-2n=?
35Na
1.5 ms
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
20Mg
95 ms
0+
%K+%β+=100, %Kp ~ 3
21Mg
122 ms
(3/2,5/2)+
%K+%β+=100 , %Kp=29.3
22Mg
3.857 s
0+
%K+%β+=100
23Mg
11.317 s
3/2+
%K+%β+=100
24Mg
stable
0+
%Abundance=78.99
25Mg
stable
5/2+
%Abundance=10.00
26Mg
stable
0+
%Abundance=11.01
27Mg
9.458 m
1/2+
%β-=100
28Mg
20.91 h
0+
%β-=100
29Mg
1.30 s
3/2+
%β-=100
30Mg
335 ms
0+
%β-=100
31Mg
230 ms
%β-=100 , %β-n=1.7
32Mg
120 ms
0+
%β-=100 , %β-n=2.4
33Mg
90 ms
%β-=100, %β-n=17
34Mg
20 ms
0+
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
22Al
70 ms
%K+%β+=100 , %Kp+%K2p ~ 2.9
23Al
0.47 s
%K+%β+=100, %Kp=?
24Al
2.053 s
4+
%K+%β+=100, %Kα=0.035
24m1Al
131.3 ms
1+
%IT=82 , %K+%β+=18 , %Kα=0.028
25Al
7.183 s
5/2+
%K+%β+=100
26Al
7.17e+5 a
5+
%K+%β+=100
26m1Al
6.3452 s
0+
%K+%β+=100
27Al
stable
5/2+
%Abundance=100
28Al
2.2414 m
3+
%β-=100
29Al
6.56 m
5/2+
%β-=100
30Al
3.60 s
3+
%β-=100
31Al
644 ms
(3/2,5/2)+
%β-=100
32Al
33 ms
1+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
22Si
6 ms
0+
%K+%β+=100, %Kp=?
23Si
24Si
102 ms
0+
%K+%β+=100, %Kp ~ 7
25Si
220 ms
5/2+
%K+%β+=100, %Kp=?
26Si
2.234 s
0+
%K+%β+=100
27Si
4.16 s
5/2+
%K+%β+=100
28Si
stable
0+
%Abundance=92.23
29Si
stable
1/2+
%Abundance=4.67
30Si
stable
0+
%Abundance=3.10
31Si
157.3 m
3/2+
%β-=100
32Si
150 a
0+
%β-=100
33Si
6.18 s
%β-=100
34Si
2.77 s
0+
%β-=100
35Si
0.78 s
%β-=100
36Si
0.45 s
0+
%β-=100, %β-n < 10
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
26P
20 ms
(3+)
%K+%β+=100, %Kp+%K2p ~ 1.9
27P
260 ms
1/2+
%K+%β+=100, %Kp ~ 0.05
28P
270.3 ms
3+
%K+%β+=100, %Kp=0.0013 , %Kα=0.00086
29P
4.140 s
1/2+
%K+%β+=100
30P
2.498 m
1+
%K+%β+=100
31P
stable
1/2+
%Abundance=100
32P
14.262 d
1+
%β-=100
33P
25.34 d
1/2+
%β-=100
34P
12.43 s
1+
%β-=100
35P
47.3 s
1/2+
%β-=100
36P
5.6 s
%β-=100
37P
2.31 s
%β-=100
38P
0.64 s
%β-=100, %β-n < 10
39P
0.16 s
%β-=100, %β-n=41
40P
260 ms
%β-=100, %β-n=30
41P
120 ms
%β-=100, %β-n=30
42P
110 ms
%β-=100, %β-n=50
43P
33 ms
%β-=100, %β-n=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
27S
21 ms
%K+%β+=100, %K2p=2.0, %Kp=?
28S
125 ms
0+
%K+%β+=100, %Kp=21
29S
187 ms
5/2+
%K+%β+=100, %Kp=47
30S
1.178 s
0+
%K+%β+=100
31S
2.572 s
1/2+
%K+%β+=100
32S
stable
0+
%Abundance=95.02
33S
stable
3/2+
%Abundance=0.75
34S
stable
0+
%Abundance=4.21
35S
87.32 d
3/2+
%β-=100
36S
stable
0+
%Abundance=0.02
37S
5.05 m
7/2-
%β-=100
38S
170.3 m
0+
%β-=100
39S
11.5 s
(3/2,5/2,7/2) -
%β-=100
40S
8.8 s
0+
%β-=100
41S
42S
0.56 s
0+
%β-=100, %β-n < 4
43S
220 ms
%β-=100, %β-n=40
44S
123 ms
0+
%β-=100, %β-n=18
45S
82 ms
%β-=100, %β-n=54
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
31Cl
150 ms
%K+%β+=100, %Kp=0.44
32Cl
298 ms
1+
%K+%β+=100 , %Kα=0.054 , %Kp=0.026
33Cl
2.511 s
3/2+
%K+%β+=100
34Cl
1.5264 s
0+
%K+%β+=100
34m1Cl
32.00 m
3+
%K+%β+=55.4 , %IT=44.6
35Cl
stable
3/2+
%Abundance=75.77
36Cl
3.01e+5 a
2+
%β-=98.10 , %K+%β+=1.90
37Cl
stable
3/2+
%Abundance=24.23
38Cl
37.24 m
2-
%β-=100
38m1Cl
715 ms
5-
%IT=100
39Cl
55.6 m
3/2+
%β-=100
40Cl
1.35 m
2-
%β-=100
41Cl
38.4 s
(1/2,3/2)+
%β-=100
42Cl
6.8 s
%β-=100
43Cl
3.3 s
%β-=100
44Cl
434 ms
%β-=100, %β-n < 8
45Cl
400 ms
%β-=100, %β-n=24
46Cl
223 ms
%β-=100, %β-n=60
47Cl
%β-=100, %β-n < 3
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
30Ar
20 ns
0+
%p=?
31Ar
15.1 ms
%K+%β+=100, %Kp=42 , %K2p=2.48 , %K3p=2.1
32Ar
98 ms
0+
%K+%β+=100, %Kp=43
33Ar
173.0 ms
1/2+
%K+%β+=100, %Kp=38.7
34Ar
844.5 ms
0+
%K+%β+=100
35Ar
1.775 s
3/2+
%K+%β+=100
36Ar
stable
0+
%Abundance=0.337
37Ar
35.04 d
3/2+
%K=100
38Ar
stable
0+
%Abundance=0.063
39Ar
269 a
7/2-
%β-=100
40Ar
stable
0+
%Abundance=99.600
41Ar
109.34 m
7/2-
%β-=100
42Ar
32.9 a
0+
%β-=100
43Ar
5.37 m
(3/2,5/2)
%β-=100
44Ar
11.87 m
0+
%β-=100
45Ar
21.48 s
%β-=100
46Ar
8.4 s
0+
%β-=100
47Ar
700 ms
%β-=100, %β-n < 1
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
35K
190 ms
3/2+
%K+%β+=100, %Kp=0.37
36K
342 ms
2+
%K+%β+=100, %Kp=0.048 , %Kα=0.0034
37K
1.226 s
3/2+
%K+%β+=100
38K
7.636 m
3+
%K+%β+=100
38m1K
923.9 ms
0+
%K+%β+=100
39K
stable
3/2+
%Abundance=93.2581
40K
1.277e+9 a
4-
%Abundance=0.0117, %β-=89.28 , %K+%β+=10.72
41K
stable
3/2+
%Abundance=6.7302
42K
12.360 h
2-
%β-=100
43K
22.3 h
3/2+
%β-=100
44K
22.13 m
2-
%β-=100
45K
17.3 m
3/2+
%β-=100
46K
105 s
(2-)
%β-=100
47K
17.50 s
1/2+
%β-=100
48K
6.8 s
(2-)
%β-=100, %β-n=1.14
49K
1.26 s
(3/2+)
%β-=100, %β-n=86
50K
472 ms
(0-,1,2-)
%β-=100, %β-n=29
51K
365 ms
(1/2+,3/2+)
%β-=100 , %β-n=47
52K
105 ms
%β-=100, %β-n=91
53K
30 ms
(3/2+)
%β-=100, %β-n=85
54K
10 ms
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
35Ca
50 ms
%K+%β+=100, %K2p=?
36Ca
102 ms
0+
%K+%β+=100, %Kp=57
37Ca
181.1 ms
3/2+
%K+%β+=100, %Kp=76
38Ca
440 ms
0+
%K+%β+=100
39Ca
859.6 ms
3/2+
%K+%β+=100
40Ca
stable
0+
%Abundance=96.941
41Ca
1.03e+5 a
7/2-
%K=100
42Ca
stable
0+
%Abundance=0.647
43Ca
stable
7/2-
%Abundance=0.135
44Ca
stable
0+
%Abundance=2.086
45Ca
162.61 d
7/2-
%β-=100
46Ca
stable
0+
%Abundance=0.004
47Ca
4.536 d
7/2-
%β-=100
48Ca
6e+18 a
0+
%Abundance=0.187, %β-=?, %ββ=?
49Ca
8.718 m
3/2-
%β-=100
50Ca
13.9 s
0+
%β-=100
51Ca
10.0 s
( 3/2- )
%β-=100, %β-n=?
52Ca
4.6 s
0+
%β-=100
53Ca
90 ms
( 3/2- ,5/2-)
%β-=100, %β-n+%β-2n > 30
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
40Sc
182.3 ms
4-
%K+%β+=100, %Kα=0.017 , %Kp=0.44
41Sc
596.3 ms
7/2-
%K+%β+=100
42Sc
681.3 ms
0+
%K+%β+=100
42m1Sc
61.7 s
7+,(5+,6+)
%K+%β+=100
43Sc
3.891 h
7/2-
%K+%β+=100
44Sc
3.927 h
2+
%K+%β+=100
44m1Sc
58.6 h
6+
%IT=98.80 , %K+%β+=1.20
45Sc
stable
7/2-
%Abundance=100
45m1Sc
318 ms
3/2+
%IT=100
46Sc
83.79 d
4+
%β-=100
46m1Sc
18.75 s
1-
%IT=100
47Sc
3.3492 d
7/2-
%β-=100
48Sc
43.67 h
6+
%β-=100
49Sc
57.2 m
7/2-
%β-=100
50Sc
102.5 s
5+
%β-=100
50m1Sc
0.35 s
2+,3+
%IT > 97.5 < 100, %β-<2.5
51Sc
12.4 s
(7/2)-
%β-=100
52Sc
8.2 s
3+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
39Ti
26 ms
( 3/2+ )
%K=100, %Kp+%K2p ~ 14
40Ti
50 ms
0+
%K+%β+=100
41Ti
80 ms
3/2+
%K+%β+=100, %Kp ~ 100
42Ti
199 ms
0+
%K+%β+=100
43Ti
509 ms
7/2-
%K+%β+=100
44Ti
63 a
0+
%K=100
45Ti
184.8 m
7/2-
%K+%β+=100
46Ti
stable
0+
%Abundance=8.0
47Ti
stable
5/2-
%Abundance=7.3
48Ti
stable
0+
%Abundance=73.8
49Ti
stable
7/2-
%Abundance=5.5
50Ti
stable
0+
%Abundance=5.4
51Ti
5.76 m
3/2-
%β-=100
52Ti
1.7 m
0+
%β-=100
53Ti
32.7 s
(3/2)-
%β-=100
54Ti
0+
55Ti
320 ms
( 3/2- )
%β-=100
56Ti
160 ms
0+
%β-=100, %β-n=0.06 s ys
57Ti
180 ms
(5/2-)
%β-=100, %β-n=0.04 sys
58Ti
0+
59Ti
(5/2-)
%β-=?
60Ti
0+
%β-=?
61Ti
(1/2-)
%β-=?, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
43V
800 ms
( 7/2- )
%K+%β+=100
44V
90 ms
(2+)
%K+%β+=100, %Kα=?
44m1V
150 ms
(6+)
%K+%β+=100
45V
547 ms
7/2-
%K+%β+=100
46V
422.37 ms
0+
%K+%β+=100
46m1V
1.02 ms
3+
%IT=100
47V
32.6 m
3/2-
%K+%β+=100
48V
15.9735 d
4+
%K+%β+=100
49V
330 d
7/2-
%K=100
50V
1.4e+17 a
6+
%Abundance=0.250, %K+%β+=83 , %β-=17
51V
stable
7/2-
%Abundance=99.750
52V
3.743 m
3+
%β-=100
53V
1.61 m
7/2-
%β-=100
54V
49.8 s
3+
%β-=100
55V
6.54 s
( 7/2- )
%β-=100
56V
230 ms
(3+)
%β-=100
57V
320 ms
( 7/2- )
%β-=100, %β-n=?
58V
200 ms
(3+)
%β-=100
59V
130 ms
( 7/2- )
%β-=100
60V
200 ms
(3+)
%β-=100, %β-n=0.03 sys
61V
62V
(3+)
%β-=?
63V
( 7/2- )
%β-=?
64V
%β-=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
43Cr
21 ms
( 3/2+ )
%K+%β+=100, %Kp=?, %Kα=?
44Cr
53 ms
0+
%K+%β+=100, %Kp<10
45Cr
50 ms
%K+%β+=100, %Kp ~ 27
46Cr
0.26 s
0+
%K+%β+=100
47Cr
500 ms
3/2-
%K+%β+=100
48Cr
21.56 h
0+
%K+%β+=100
49Cr
42.3 m
5/2-
%K+%β+=100
50Cr
1.8e+17 a
0+
%Abundance=4.345, %KK=?
51Cr
27.7025 d
7/2-
%K=100
52Cr
stable
0+
%Abundance=83.789
53Cr
stable
3/2-
%Abundance=9.501
54Cr
stable
0+
%Abundance=2.365
55Cr
3.497 m
3/2-
%β-=100
56Cr
5.94 m
0+
%β-=100
57Cr
21.1 s
3/2-,5/2-, 7/2-
%β-=100
58Cr
7.0 s
0+
%β-=100
59Cr
0.74 s
%β-=100
60Cr
0.57 s
0+
%β-=100
61Cr
270 ms
(5/2-)
%β-=100, %β-n=0.6 sys
62Cr
190 ms
0+
%β-=100, %β-n=1.0 sys
63Cr
110 ms
(1/2-)
%β-=100, %β-n=1.4 sys
64Cr
0+
65Cr
(1/2-)
%β-=?
66Cr
0+
%β-=100
67Cr
(1/2-)
%β-=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
46Mn
41 ms
%K=100, %Kp=32
47Mn
100 ms
%K+%β+=100, %Kp > 3.4
48Mn
158.1 ms
4+
%K+%β+=100, %Kp=0.28 , %Kα<6E-4
49Mn
382 ms
5/2-
%K+%β+=100
50Mn
283.88 ms
0+
%K+%β+=100
50m1Mn
1.75 m
5+
%K+%β+=100
51Mn
46.2 m
5/2-
%K+%β+=100
52Mn
5.591 d
6+
%K+%β+=100
52m1Mn
21.1 m
2+
%K+%β+=98.25 , %IT=1.75
53Mn
3.74e+6 a
7/2-
%K=100
54Mn
312.3 d
3+
%K+%β+=100, %β- < 2.9E-4
55Mn
stable
5/2-
%Abundance=100
56Mn
2.5785 h
3+
%β-=100
57Mn
85.4 s
5/2-
%β-=100
58Mn
3.0 s
1+
%β-=100
58m1Mn
65.2 s
(4)+
%β- ~ 80, %IT ~ 20
59Mn
4.6 s
3/2-,5/2-
%β-=100
60Mn
51 s
0+
%β-=100
60m1Mn
1.77 s
3+
%β-=88.5 , %IT=11.5
61Mn
0.71 s
(5/2-)
%β-=100
62Mn
0.88 s
(3+)
%β-=100
63Mn
0.25 s
%β-=100
64Mn
140 ms
(3+)
%β-=100, %β-n=1.4 sys
65Mn
110 ms
(5/2-)
%β-=100, %β-n=6.9 sys
66Mn
90 ms
%β-=100, %β-n=11 sys
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
46Fe
20 ms
0+
%K=100, %Kp=?
47Fe
27 ms
%K+%β+=100, %Kp=?
48Fe
44 ms
0+
%K+%β+=100, %Kp > 3.6
49Fe
70 ms
( 7/2- )
%K+%β+=100, %Kp > 62
50Fe
150 ms
0+
%K+%β+=100, %β+P ~ 0
51Fe
305 ms
5/2-
%K+%β+=100
52Fe
8.275 h
0+
%K+%β+=100
52m1Fe
45.9 s
(12+)
%K+%β+=100
53Fe
8.51 m
7/2-
%K+%β+=100
53m1Fe
2.58 m
19/2-
%IT=100
54Fe
stable
0+
%Abundance=5.8
55Fe
2.73 a
3/2-
%K=100
56Fe
stable
0+
%Abundance=91.72
57Fe
stable
1/2-
%Abundance=2.2
58Fe
stable
0+
%Abundance=0.28
59Fe
44.503 d
3/2-
%β-=100
60Fe
1.5e+6 a
0+
%β-=100
61Fe
5.98 m
3/2-,5/2-
%β-=100
62Fe
68 s
0+
%β-=100
63Fe
6.1 s
(5/2)-
%β-=100
64Fe
2.0 s
0+
%β-=100
65Fe
0.4 s
%β-=100
66Fe
440 ms
0+
%β-=100
67Fe
470 ms
(1/2-)
%β-=100, %β-n=1.1 s ys
68Fe
0.10 s
0+
%β-=100
69Fe
170 ms
(1/2-)
%β-=100, %β-n=6.9 sys
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
50Co
44 ms
(6+)
%K+%β+=100, %Kp > 42
51Co
( 7/2- )
52Co
18 ms
%K+%β+=100
53Co
240 ms
( 7/2- )
%K+%β+=100
53m1Co
247 ms
(19/2-)
%K+%β+ ~ 98.5, %p ~ 1.5
54Co
193.23 ms
0+
%K+%β+=100
54m1Co
1.48 m
(7)+
%K+%β+=100
55Co
17.53 h
7/2-
%K+%β+=100
56Co
77.27 d
4+
%K+%β+=100
57Co
271.79 d
7/2-
%K=100
58Co
70.86 d
2+
%K+%β+=100
58m1Co
9.04 h
5+
%IT=100
59Co
stable
7/2-
%Abundance=100
60Co
5.2714 a
5+
%β-=100
60m1Co
10.467 m
2+
%IT=99.76 , %β-=0.24
61Co
1.650 h
7/2-
%β-=100
62Co
1.50 m
2+
%β-=100
62m1Co
13.91 m
5+
%β- ~ 100, %IT < 1
63Co
27.4 s
(7/2)-
%β-=100
64Co
0.30 s
1+
%β-=100
65Co
1.20 s
(7/2)-
%β-=100
66Co
0.233 s
(3+)
%β-=100
67Co
0.42 s
( 7/2- )
%β-=100
68Co
0.18 s
%β-=100
69Co
0.27 s
%β-=100
70Co
150 ms
%β-=100, %β-n=2.5 sys
71Co
210 ms
( 7/2- )
%β-=100, %β-n=2.6 sys
72Co
90 ms
%β-=100, %β-n=4.8 sys
73Co
( 7/2- )
%β-=?
74Co
%β-=?
75Co
( 7/2- )
%β-=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
52Ni
38 ms
0+
%K+%β+=100, %Kp=17
53Ni
45 ms
( 7/2- )
%K+%β+=100, %Kp ~ 45
54Ni
0+
%K+%β+=100
55Ni
212.1 ms
7/2-
%K+%β+=100
56Ni
6.077 d
0+
%K+%β+=100
57Ni
35.60 h
3/2-
%K+%β+=100
58Ni
stable
0+
%Abundance=68.077
59Ni
7.6e+4 a
3/2-
%K+%β+=100
60Ni
stable
0+
%Abundance=26.223
61Ni
stable
3/2-
%Abundance=1.140
62Ni
stable
0+
%Abundance=3.634
63Ni
100.1 a
1/2-
%β-=100
64Ni
stable
0+
%Abundance=0.926
65Ni
2.5172 h
5/2-
%β-=100
66Ni
54.6 h
0+
%β-=100
67Ni
21 s
(1/2-)
%β-=100
68Ni
19 s
0+
%β-=100
69Ni
11.4 s
%β-=100
70Ni
0+
71Ni
1.86 s
%β-=100
72Ni
2.1 s
0+
%β-=100
73Ni
0.70 s
(7/2+)
%β-=100, %β-n=0.3 sys
74Ni
0.54 s
0+
%β-=100, %β-n=4.5 sys
75Ni
0.6 s
(7/2+)
%β-=100, %β-n=8.4 sys
76Ni
0.24 s
0+
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
57Cu
199.4 ms
3/2-
%K+%β+=100
58Cu
3.204 s
1+
%K+%β+=100
59Cu
81.5 s
3/2-
%K+%β+=100
60Cu
23.7 m
2+
%K+%β+=100
61Cu
3.333 h
3/2-
%K+%β+=100
62Cu
9.74 m
1+
%K+%β+=100
63Cu
stable
3/2-
%Abundance=69.17
64Cu
12.700 h
1+
%K+%β+=61.0 , %β-=39.0
65Cu
stable
3/2-
%Abundance=30.83
66Cu
5.120 m
1+
%β-=100
67Cu
61.83 h
3/2-
%β-=100
68Cu
31.1 s
1+
%β-=100
68m1Cu
3.75 m
(6-)
%IT=84 , %β-=16
69Cu
2.85 m
3/2-
%β-=100
70Cu
4.5 s
(1+)
%β-=100
70m1Cu
47 s
(4)-
%β-=100
71Cu
19.5 s
( 3/2- )
%β-=100
72Cu
6.6 s
(1+)
%β-=100
73Cu
3.9 s
%β-=100
74Cu
1.594 s
(1+,3+)
%β-=100
75Cu
1.224 s
%β-=100, %β-n=3.5
76Cu
0.641 s
%β-=100, %β-n=3
76m1Cu
1.27 s
%β-=100
77Cu
469 ms
%β-=100, %β-n=?
78Cu
342 ms
%β-=100
79Cu
188 ms
%β-=100, %β-n=55
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
57Zn
40 ms
( 7/2- )
%K+%β+=100, %Kp > 65
58Zn
65 ms
0+
%K+%β+=100
59Zn
182.0 ms
3/2-
%K+%β+=100, %Kp=0.10
60Zn
2.38 m
0+
%K+%β+=100
61Zn
89.1 s
3/2-
%K+%β+=100
62Zn
9.186 h
0+
%K+%β+=100
63Zn
38.47 m
3/2-
%K+%β+=100
64Zn
stable
0+
%Abundance=48.6
65Zn
244.26 d
5/2-
%K+%β+=100
66Zn
stable
0+
%Abundance=27.9
67Zn
stable
5/2-
%Abundance=4.1
68Zn
stable
0+
%Abundance=18.8
69Zn
56.4 m
1/2-
%β-=100
69m1Zn
13.76 h
9/2+
%IT=99.967 , %β-=0.033
70Zn
5e+14 a
0+
%Abundance=0.6
71Zn
2.45 m
1/2-
%β-=100
71m1Zn
3.96 h
9/2+
%β-=100, %IT < 0.05
72Zn
46.5 h
0+
%β-=100
73Zn
23.5 s
(1/2)-
%β-=100
73m1Zn
5.8 s
(7/2+)
%β-=?, %IT=?
74Zn
95.6 s
0+
%β-=100
75Zn
10.2 s
(7/2+)
%β-=100
76Zn
5.7 s
0+
%β-=100
77Zn
2.08 s
(7/2+)
%β-=100
77m1Zn
1.05 s
(1/2-)
%IT > 50, %β- < 50
78Zn
1.47 s
0+
%β-=100
79Zn
995 ms
(9/2+)
%β-=100, %β-n=1.3
80Zn
0.545 s
0+
%β-=100, %β-n=1.0
81Zn
0.29 s
%β-=100, %β-n=7.5
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
61Ga
0.15 s
(3/2- )
%K+%β+=100
62Ga
116.12 ms
0+
%K+%β+=100
63Ga
32.4 s
3/2- ,5/2-
%K+%β+=100
64Ga
2.627 m
0+
%K+%β+=100
65Ga
15.2 m
3/2-
%K+%β+=100
66Ga
9.49 h
0+
%K+%β+=100
67Ga
3.2612 d
3/2-
%K=100
68Ga
67.629 m
1+
%K+%β+=100
69Ga
stable
3/2-
%Abundance=60.108
70Ga
21.14 m
1+
%β-=99.59 , %K=0.41
71Ga
stable
3/2-
%Abundance=39.892
72Ga
14.10 h
3-
%β-=100
72m1Ga
39.68 ms
( 0+)
%IT=100
73Ga
4.86 h
3/2-
%β-=100
74Ga
8.12 m
(3-)
%β-=100
74m1Ga
9.5 s
(0)
%IT > 50, %β- < 50
75Ga
126 s
3/2-
%β-=100
76Ga
32.6 s
(2+,3+)
%β-=100
77Ga
13.2 s
(3/2- )
%β-=100
78Ga
5.09 s
(3+)
%β-=100
79Ga
2.847 s
(3/2- )
%β-=100, %β-n=0.089
80Ga
1.697 s
(3)
%β-=100, %β-n=0.89
81Ga
1.217 s
(5/2- )
%β-=100 , %β-n=11.9
82Ga
0.599 s
(1,2,3)
%β-=100, %β-n=22.3
83Ga
0.31 s
%β-=100, %β-n=40
84Ga
85 ms
%β-=100, %β-n=70
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
61Ge
40 ms
(3/2- )
%K+%β+=100, %Kp ~ 80
62Ge
0+
%K+%β+=100
63Ge
95 ms
%K+%β+=100
64Ge
63.7 s
0+
%K+%β+=100
65Ge
30.9 s
(3/2)
- %K+%β+=100, %Kp=0.011
66Ge
2.26 h
0+
%K+%β+=100
67Ge
18.9 m
1/2-
%K+%β+=100
68Ge
270.8 d
0+
%K=100
69Ge
39.05 h
5/2-
%K+%β+=100
70Ge
stable
0+
%Abundance=21.23
71Ge
11.43 d
1/2-
%K=100
71m1Ge
20.40 ms
9/2+
%IT=100
72Ge
stable
0+
%Abundance=27.66
73Ge
stable
9/2+
%Abundance=7.73
73m1Ge
0.499 s
1/2-
%IT=100
74Ge
stable
0+
%Abundance=35.94
75Ge
82.78 m
1/2-
%β-=100
75m1Ge
47.7 s
7/2+
%IT=99.970 , %β-=0.030
76Ge
stable
0+
%Abundance=7.44
77Ge
11.30 h
7/2+
%β-=100
77m1Ge
52.9 s
1/2-
%β-=81 , %IT=19
78Ge
88.0 m
0+
%β-=100
79Ge
18.98 s
(1/2 )
- %β-=100
79m1Ge
39.0 s
(7/2+)
%β-=96 , %IT=4
80Ge
29.5 s
0+
%β-=100
81Ge
7.6 s
(9/2+)
%β-=100
81m1Ge
7.6 s
(1/2+)
%β-=100
82Ge
4.60 s
0+
%β-=100
83Ge
1.85 s
(5/2+)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
65As
0.19 s
%K+%β+=100
66As
95.77 ms
%K+%β+=100
67As
42.5 s
(5/2- )
%K+%β+=100
68As
151.6 s
3+
%K+%β+=100
69As
15.2 m
5/2-
%K+%β+=100
70As
52.6 m
4(+)
%K+%β+=100
71As
65.28 h
5/2-
%K+%β+=100
72As
26.0 h
2-
%K+%β+=100
73As
80.30 d
3/2-
%K=100
74As
17.77 d
2-
%β-=34 , %K+%β+=66
75As
stable
3/2-
%Abundance=100
75m1As
16.79 ms
9/2+
%IT=100
76As
1.0778 d
2-
%β-=100
77As
38.83 h
3/2-
%β-=100
78As
90.7 m
2-
%β-=100
79As
9.01 m
3/2-
%β-=100
80As
15.2 s
1+
%β-=100
81As
33.3 s
3/2-
%β-=100
82As
19.1 s
(1+)
%β-=100
82m1As
13.6 s
(5-)
%β-=100
83As
13.4 s
(5/2- ,3/2- )
%β-=100
84As
4.5 s
(3-)
%β-=100, %β-n=0.28
85As
2.021 s
(3/2- )
%β-=100, %β-n=59.4
86As
0.945 s
%β-=100, %β-n=33
87As
0.48 s
(3/2- )
%β-=100, %β-n=15.4
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
67Se
60 ms
%K+%β+=100, %Kp=0.5
68Se
35.5 s
0+
%K+%β+=100
69Se
27.4 s
(3/2- )
%K+%β+=100, %Kp=0.045
70Se
41.1 m
0+
%K+%β+=100
71Se
4.74 m
3/2- ,5/2-
%K+%β+=100
72Se
8.40 d
0+
%K=100
73Se
7.15 h
9/2+
%K+%β+=100
73m1Se
39.8 m
3/2-
%K+%β+=27.4 , %IT=72.6
74Se
stable
0+
%Abundance=0.89
75Se
119.779 d
5/2+
%K=100
76Se
stable
0+
%Abundance=9.36
77Se
stable
1/2-
%Abundance=7.63
77m1Se
17.36 s
7/2+
%IT=100
78Se
stable
0+
%Abundance=23.78
79Se
1.13e6 a
7/2+
%β-=100
79m1Se
3.92 m
1/2-
%IT=99.944 , %β-=0.056
80Se
stable
0+
%Abundance=49.61
81Se
18.45 m
1/2-
%β-=100
81m1Se
57.28 m
7/2+
%IT=99.948 , %β-=0.052
82Se
1.08e+20 a
0+
%Abundance=8.73, %ββ=100
83Se
22.3 m
9/2+
%β-=100
83m1Se
70.1 s
1/2-
%β-=100
84Se
3.10 m
0+
%β-=100
85Se
31.7 s
(5/2+)
%β-=100
86Se
15.3 s
0+
%β-=100
87Se
5.29 s
(5/2+)
%β-=100, %β-n=0.36
88Se
1.53 s
0+
%β-=100, %β-n=0.99
89Se
0.41 s
(5/2+)
%β-=100, %β-n=7.8
90Se
0+
91Se
0.27 s
%β-=100, %β-n=21
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
70Br
79.1 ms
%K+%β+=100
70m1Br
2.2 s
%K+%β+=100
71Br
21.4 s
5/2-
%K+%β+=100
72Br
78.6 s
3+
%K+%β+=100
72m1Br
10.6 s
1-
%IT ~ 100, %K+%β+=?
73Br
3.4 m
1/2-
%K+%β+=100
74Br
25.4 m
(0-)
%K+%β+=100
74m1Br
46 m
4(+)
%K+%β+=100
75Br
96.7 m
3/2-
%K+%β+=100
76Br
16.2 h
1-
%K+%β+=100
76m1Br
1.31 s
(4)
+ %IT > 99.4, %K+%β+ < 0.6
77Br
57.036 h
3/2-
%K+%β+=100
77m1Br
4.28 m
9/2+
%IT=100
78Br
6.46 m
1+
%K+%β+=100, %β- < 0.01
78m1Br
119.2 μs
(4+)
79Br
stable
3/2-
%Abundance=50.69
79m1Br
4.86 s
9/2+
%IT=100
80Br
17.68 m
1+
%β-=91.7 , %K+%β+=8.3
80m1Br
4.4205 h
5-
%IT=100
81Br
stable
3/2-
%Abundance=49.31
82Br
35.30 h
5-
%β-=100
82m1Br
6.13 m
2-
%IT=97.6 , %β-=2.4
83Br
2.40 h
3/2-
%β-=100
84Br
31.80 m
2-
%β-=100
84m1Br
6.0 m
6-
%β-=100
85Br
2.90 m
3/2-
%β-=100
86Br
55.1 s
(2- )
%β-=100
87Br
55.60 s
3/2-
%β-=100, %β-n=2.52
88Br
16.34 s
(1,2- )
%β-=100, %β-n=6.58
89Br
4.348 s
(3/2- ,5/2- )
%β-=100, %β-n=13.8
90Br
1.91 s
%β-n=25.2 , %β-=100
91Br
0.541 s
%β-=100, %β-n=18.3
92Br
0.343 s
(2- )
%β-=100, %β-n=33
93Br
102 ms
(5/2- )
%β-=100, %β-n=10 +5-3
94Br
70 ms
%β-=100, %β-n=30
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
71Kr
64 ms
%K+%β+=100, %Kp=5.2
72Kr
17.2 s
0+
%K+%β+=100
73Kr
27.0 s
5/2-
%K+%β+=100, %Kp=0.68
74Kr
11.50 m
0+
%K+%β+=100
75Kr
4.3 m
(5/2) +
%K+%β+=100
76Kr
14.8 h
0+
%K+%β+=100
77Kr
74.4 m
5/2+
%K+%β+=100
78Kr
stable
0+
%Abundance=0.35
79Kr
35.04 h
1/2-
%K+%β+=100
79m1Kr
50 s
7/2+
%IT=100
80Kr
stable
0+
%Abundance=2.25
81Kr
2.29e+5 a
7/2+
%K=100
81m1Kr
13.10 s
1/2-
%IT=99.9975 , %K=2.5E-3
82Kr
stable
0+
%Abundance=11.6
83Kr
stable
9/2+
%Abundance=11.5
83m1Kr
1.83 h
1/2-
%IT=100
84Kr
stable
0+
%Abundance=57.0
85Kr
10.756 a
9/2+
%β-=100
85m1Kr
4.480 h
1/2-
%IT=21.4 , %β-=78.6
86Kr
stable
0+
%Abundance=17.3
87Kr
76.3 m
5/2+
%β-=100
88Kr
2.84 h
0+
%β-=100
89Kr
3.15 m
(3/2+,5/2+)
%β-=100
90Kr
32.32 s
0+
%β-=100
91Kr
8.57 s
(5/2+)
%β-=100
92Kr
1.840 s
0+
%β-=100, %β-n=0.033
93Kr
1.286 s
(1/2+)
%β-=100, %β-n=1.95
94Kr
0.20 s
0+
%β-=100, %β-n=5.7
95Kr
0.78 s
1/2
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
74Rb
64.9 ms
(0+)
%K+%β+=100
75Rb
19.0 s
(3/2- ,5/2-)
%K+%β+=100
76Rb
36.5 s
1(-)
%K+%β+=100
77Rb
3.77 m
3/2-
%K+%β+=100
78Rb
17.66 m
0(+)
%K+%β+=100
78m1Rb
5.74 m
4(-)
%K+%β+=90 , %IT=10
79Rb
22.9 m
5/2+
%K+%β+=100
80Rb
34 s
1+
%K+%β+=100
81Rb
4.576 h
3/2-
%K+%β+=100
81m1Rb
30.5 m
9/2+
%IT=97.6 , %K+%β+ =2.4
82Rb
1.273 m
1+
%K+%β+=100
82m1Rb
6.472 h
5-
%K+%β+=100, %IT<0.33
83Rb
86.2 d
5/2-
%K=100
83m1Rb
7.8 ms
9/2+
%IT=?, %K+%β+=?
84Rb
32.77 d
2-
%β-=3.8 , %K+%β+=96.2
84m1Rb
20.26 m
6-
%IT=100
85Rb
stable
5/2-
%Abundance=72.165
86Rb
18.631 d
2-
%β-=99.9948 , %K=0.0052
86m1Rb
1.017 m
6-
%IT=100
87Rb
4.75e10 a
3/2-
%Abundance=27.835, %β-=100
88Rb
17.78 m
2-
%β-=100
89Rb
15.15 m
3/2-
%β-=100
90Rb
158 s
0-
%β-=100
90m1Rb
258 s
3-
%β-=97.4 , %IT=2.6
91Rb
58.4 s
3/2(-)
%β-=100
92Rb
4.492 s
0-
%β-=100, %β-n=0.0107
93Rb
5.84 s
5/2-
%β-=100, %β-n=1.39
94Rb
2.702 s
3(-)
%β-=100, %β-n=10.4
95Rb
377.5 ms
5/2-
%β-=100, %β-n=8.73
96Rb
0.199 s
2+
%β-=100, %β-n=13.8
97Rb
169.9 ms
3/2(+)
%β-=100, %β-n=25.1
98Rb
114 ms
(1,0)
%β-=100, %β-n=13.6 , %β-2n=0.051
98m1Rb
96 ms
(4,5)
%β-=100
99Rb
50.3 ms
(5/2+ )
%β-=100, %β-n=20.7
100Rb
51 ms
%β-=100, %β-n=6 , %β-2n=0.16
101Rb
32 ms
(3/2+ )
%β-=100, %β-n=28
102Rb
37 ms
%β-=100 , %β-n=18
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
75Sr
71 ms
%K+%β+=100, %Kp=6.5
76Sr
8.9 s
0+
%K+%β+=100
77Sr
9.0 s
5/2+
%K+%β+=100 , %Kp < 0.25
78Sr
2.5 m
0+
%K+%β+=100
79Sr
2.25 m
3/2(-)
%K+%β+=100
80Sr
106.3 m
0+
%K+%β+=100
81Sr
22.3 m
1/2-
%K+%β+=100
82Sr
25.55 d
0+
%K=100
83Sr
32.41 h
7/2+
%K+%β+=100
83m1Sr
4.95 s
1/2-
%IT=100
84Sr
stable
0+
%Abundance=0.56
85Sr
64.84 d
9/2+
%K=100
85m1Sr
67.63 m
1/2-
%IT=86.6 , %K+%β+=13.4
86Sr
stable
0+
%Abundance=9.86
87Sr
stable
9/2+
%Abundance=7.00
87m1Sr
2.803 h
1/2-
%K=0.30 , %IT=99.70
88Sr
stable
0+
%Abundance=82.58
89Sr
50.53 d
5/2+
%β-=100
90Sr
28.79 a
0+
%β-=100
91Sr
9.63 h
5/2+
%β-=100
92Sr
2.71 h
0+
%β-=100
93Sr
7.423 m
5/2+
%β-=100
94Sr
75.3 s
0+
%β-=100
95Sr
23.90 s
1/2+
%β-=100
96Sr
1.07 s
0+
%β-=100
97Sr
426 ms
1/2+
%β-=100, %β-n=0.005
98Sr
0.653 s
0+
%β-=100, %β-n=0.18
99Sr
0.269 s
3/2+
%β-=100, %β-n=0.100
100Sr
202 ms
0+
%β-=100, %β-n=0.78
101Sr
118 ms
(5/2-)
%β-=100, %β-n=2.37
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
79Y
14.8 s
(5/2+ )
%K+%β+=100, %Kp=?
80Y
35 s
(3,4,5)
%K+%β+=100
81Y
70.4 s
(5/2+ )
%K+%β+=100
82Y
9.5 s
1+
%K+%β+=100
83Y
7.08 m
(9/2+ )
%K+%β+=100
83m1Y
2.85 m
(3/2-)
%K+%β+=60 , %IT=40
84Y
4.6 s
1+
%K+%β+=100
84m1Y
39.5 m
(5-)
%K+%β+=100
85Y
2.68 h
(1/2) -
%K+%β+=100
85m1Y
4.86 h
9/2+
%K+%β+=100, %IT < 2E-3
86Y
14.74 h
4-
%K+%β+=100
86m1Y
48 m
(8+ )
%IT=99.31 , %K+%β+=0.69
87Y
79.8 h
1/2-
%K+%β+=100
87m1Y
13.37 h
9/2+
%IT=98.43 , %K+%β+=1.57
88Y
106.65 d
4-
%K+%β+=100
88m1Y
13.9 ms
(8) +
%IT=100
89Y
stable
1/2-
%Abundance=100
89m1Y
16.06 s
9/2+
%IT=100
90Y
64.00 h
2-
%β-=100
90m1Y
3.19 h
7+
%IT=99.9982 , %β-=0.0018
91Y
58.51 d
1/2-
%β-=100
91m1Y
49.71 m
9/2+
%IT=100, %β-<1.5
92Y
3.54 h
2-
%β-=100
93Y
10.18 h
1/2-
%β-=100
93m1Y
0.82 s
7/2+
%IT=100
94Y
18.7 m
2-
%β-=100
95Y
10.3 m
1/2-
%β-=100
96Y
5.34 s
0-
%β-=100
96m1Y
9.6 s
(8+ )
%β- ~ 100
97Y
3.75 s
(1/2-)
%β-=100, %β-n=0.055
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
81Zr
15 s
%K+%β+=100, %Kp=?
82Zr
32 s
0+
%K+%β+=100
83Zr
44 s
(1/2-)
%K+%β+=100, %Kp=?
84Zr
25.9 m
0+
%K+%β+=100
85Zr
7.86 m
7/2+
%K+%β+=100
85m1Zr
10.9 s
(1/2-)
%K+%β+ > 8, %IT < 92
86Zr
16.5 h
0+
%K+%β+=100
87Zr
1.68 h
(9/2) +
%K+%β+=100
87m1Zr
14.0 s
(1/2) -
%IT=100
88Zr
83.4 d
0+
%K=100
89Zr
78.41 h
9/2+
%K+%β+=100
89m1Zr
4.18 m
1/2-
%K+%β+=6.23 , %IT=93.77
90Zr
stable
0+
%Abundance=51.45
90m1Zr
809.2 ms
5-
%IT=100
91Zr
stable
5/2+
%Abundance=11.22
92Zr
stable
0+
%Abundance=17.15
93Zr
1.53e+6 a
5/2+
%β-=100
94Zr
stable
0+
%Abundance=17.38
95Zr
64.02 d
5/2+
%β-=100
96Zr
3.8e19 a
0+
%Abundance=2.80, %β- β-=100
97Zr
16.91 h
1/2+
%β-=100
98Zr
30.7 s
0+
%β-=100
99Zr
2.1 s
(1/2+ )
%β-=100
100Zr
7.1 s
0+
%β-=100
101Zr
2.3 s
(3/2+ )
%β-=100
102Zr
2.9 s
0+
%β-=100
103Zr
1.3 s
(5/2-)
%β-=100
104Zr
1.2 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
83Nb
4.1 s
(5/2+ )
%K+%β+=100
84Nb
12 s
3+
%K+%β+=100, %Kp=?
85Nb
20.9 s
(9/2+ )
%K+%β+=100
86Nb
88 s
(5+ )
%K+%β+=100
86m1Nb
56 s
%K+%β+=100
87Nb
2.6 m
(9/2+ )
%K+%β+=100
87m1Nb
3.7 m
(1/2-)
%K+%β+=100
88Nb
14.5 m
(8+ )
%K+%β+=100
88m1Nb
7.8 m
(4-)
%K+%β+=100
89Nb
1.9 h
(9/2+ )
%K+%β+=100
89m1Nb
1.18 h
(1/2) -
%K+%β+=100
90Nb
14.60 h
8+
%K+%β+=100
90m1Nb
18.81 s
4-
%IT=100
90m2Nb
6.19 ms
1+
%IT=100
91Nb
680 a
9/2+
%K+%β+=100
91m1Nb
60.86 d
1/2-
%IT=93 , %K+%β+=7
92Nb
3.47e+7 a
(7) +
%K+%β+=100, %β- < 0.05
92m1Nb
10.15 d
(2) +
%K+%β+=100
93Nb
stable
9/2+
%Abundance=100
93m1Nb
16.13 a
1/2-
%IT=100
94Nb
2.03e+4 a
(6) +
%β-=100
94m1Nb
6.263 m
3+
%IT=99.50 , %β-=0.50
95Nb
34.975 d
9/2+
%β-=100
95m1Nb
86.6 h
1/2-
%β-=5.6 , %IT=94.4
96Nb
23.35 h
6+
%β-=100
97Nb
72.1 m
9/2+
%β-=100
97m1Nb
52.7 s
1/2-
%IT=100
98Nb
2.86 s
1+
%β-=100
98m1Nb
51.3 m
(5+ )
%β-=99.9 , %IT < 0.2
99Nb
15.0 s
9/2+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
86Mo
19.6 s
0+
%K+%β+=100
87Mo
13.4 s
(7/2+ )
%K+%β+=100, %β+P=?
88Mo
8.0 m
0+
%K+%β+=100
89Mo
2.04 m
(9/2+ )
%K+%β+=100
89m1Mo
190 ms
(1/2-)
%IT=100
90Mo
5.56 h
0+
%K+%β+=100
91Mo
15.49 m
9/2+
%K+%β+=100
91m1Mo
65.0 s
1/2-
%K+%β+=49.9 , %IT=50.1
92Mo
stable
0+
%Abundance=14.84
93Mo
4.0e+3 a
5/2+
%K=100
93m1Mo
6.85 h
21/2+
%IT=99.88 , %K+%β+=0.12
94Mo
stable
0+
%Abundance=9.25
95Mo
stable
5/2+
%Abundance=15.92
96Mo
stable
0+
%Abundance=16.68
97Mo
stable
5/2+
%Abundance=9.55
98Mo
stable
0+
%Abundance=24.13
99Mo
65.94 h
1/2+
%β-=100
100Mo
1.00e+19 a
0+
%Abundance=9.63, %ββ=100
101Mo
14.61 m
1/2+
%β-=100
102Mo
11.3 m
0+
%β-=100
103Mo
67.5 s
(3/2+ )
%β-=100
104Mo
60 s
0+
%β-=100
105Mo
35.6 s
(5/2-)
%β-=100
106Mo
8.4 s
0+
%β-=100
107Mo
3.5 s
%β-=100
108Mo
1.09 s
0+
%β-=100
109Mo
0.53 s
%β-=100
110Mo
0.30 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
88Tc
6.4 s
(6,7,8)
%K+%β+=100
88m1Tc
5.8 s
(2,3)
%K+%β+=100
89Tc
12.8 s
(9/2+ )
%K+%β+=100
89m1Tc
12.9 s
(1/2-)
%K+%β+=100
90Tc
49.2 s
(8+ )
%K+%β+=100
90m1Tc
8.7 s
1+
%K+%β+=100
91Tc
3.14 m
(9/2) +
%K+%β+=100
91m1Tc
3.3 m
(1/2) -
%K+%β+=100, %IT<1
92Tc
4.23 m
(8) +
%K+%β+=100
93Tc
2.75 h
9/2+
%K+%β+=100
93m1Tc
43.5 m
1/2-
%IT=76.6 , %K+%β+=23.4
94Tc
293 m
7+
%K+%β+=100
94m1Tc
52.0 m
(2) +
%K+%β+=100, %IT<0.1
95Tc
20.0 h
9/2+
%K+%β+=100
95m1Tc
61 d
1/2-
%K+%β+=96.12 , %IT=3.88
96Tc
4.28 d
7+
%K+%β+=100
96m1Tc
51.5 m
4+
%IT=98.0 , %K+%β+=2.0
97Tc
2.6e6 a
9/2+
%K=100
97m1Tc
90.1 d
1/2-
%IT=100, %K<0.34
98Tc
4.2e+6 a
(6) +
%β-=100
99Tc
2.111e+5 a
9/2+
%β-=100
99m1Tc
6.01 h
1/2-
%IT=99.9963 , %β-=0.0037
100Tc
15.8 s
1+
%β-=99.9982 , %K=0.0018
101Tc
14.22 m
9/2+
%β-=100
102Tc
5.28 s
1+
%β-=100
102m1Tc
4.35 m
(4,5)
%β-=98 , %IT=2
103Tc
54.2 s
5/2+
%β-=100
104Tc
18.3 m
(3+ )
%β-=100
105Tc
7.6 m
(3/2-)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
90Ru
11 s
0+
%K+%β+=100
91Ru
9 s
(9/2+ )
%K+%β+=100
91m1Ru
7.6 s
(1/2-)
%K+%β+=?, %Kp=?, %IT=?
92Ru
3.65 m
0+
%K+%β+=100
93Ru
59.7 s
(9/2) +
%K+%β+=100
93m1Ru
10.8 s
(1/2) -
%IT=22.0 , %K+%β+=78.0 , %Kp=0.027
94Ru
51.8 m
0+
%K+%β+=100
95Ru
1.643 h
5/2+
%K+%β+=100
96Ru
stable
0+
%Abundance=5.52
97Ru
2.9 d
5/2+
%K=100
98Ru
stable
0+
%Abundance=1.88
99Ru
stable
5/2+
%Abundance=12.7
100Ru
stable
0+
%Abundance=12.6
101Ru
stable
5/2+
%Abundance=17.0
102Ru
stable
0+
%Abundance=31.6
103Ru
39.26 d
3/2+
%β-=100
103m1Ru
1.69 ms
11/2-
%IT=100
104Ru
stable
0+
%Abundance=18.7
105Ru
4.44 h
3/2+
%β-=100
106Ru
373.59 d
0+
%β-=100
107Ru
3.75 m
(5/2) +
%β-=100
108Ru
4.55 m
0+
%β-=100
109Ru
34.5 s
(5/2+ )
%β-=100
110Ru
14.6 s
0+
%β-=100
111Ru
2.12 s
%β-=100
112Ru
1.75 s
0+
%β-=100
113Ru
0.80 s
%β-=100
114Ru
0.53 s
0+
%β-=100
115Ru
0.40 s
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
94Rh
70.6 s
(3+ )
%K+%β+=100, %Kp=1.8
94m1Rh
25.8 s
(8+ )
%K+%β+=100
95Rh
5.02 m
(9/2) +
%K+%β+=100
95m1Rh
1.96 m
(1/2) -
%K+%β+=12 , %IT=88
96Rh
9.90 m
6+
%K+%β+=100
96m1Rh
1.51 m
3+
%IT=60 , %K+%β+=40
97Rh
30.7 m
(9/2) +
%K+%β+=100
97m1Rh
46.2 m
(1/2) -
%K+%β+=94.4 , %IT=5.6
98Rh
8.7 m
(2) +
%K+%β+=100
98m1Rh
3.5 m
(5+ )
%K+%β+>0, %IT=?
99Rh
16.1 d
1/2-
%K+%β+=100
99m1Rh
4.7 h
9/2+
%K+%β+ > 99.84 , %IT<0.16
100Rh
20.8 h
1-
%K+%β+=100
100m1Rh
4.6 m
(5+ )
%IT ~ 98.3, %K+%β+ ~ 1.7
101Rh
3.3 a
1/2-
%K=100
101m1Rh
4.34 d
9/2+
%K=92.80 , %IT=7.20
102Rh
207 d
(1- ,2-)
%β-=20 , %K+%β+=80
102m1Rh
2.9 a
6(+)
%K+%β+=99.767 , %IT=0.233
103Rh
stable
1/2-
%Abundance=100
103m1Rh
56.12 m
7/2+
%IT=100
104Rh
42.3 s
1+
%β-= 99.55 , %K+%β+= 0.45
104m1Rh
4.34 m
5+
%IT=99.87 , %β-=0.13
105Rh
35.36 h
7/2+
%β-=100
105m1Rh
45 s
1/2-
%IT=100
106Rh
29.80 s
1+
%β-=100
106m1Rh
131 m
(6) +
%β-=100
107Rh
21.7 m
7/2+
%β-=100
108Rh
16.8 s
1+
%β-=100
108m1Rh
6.0 m
(5+ )
%β-=100
109Rh
80 s
7/2+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
96Pd
122 s
0+
%K+%β+=100
97Pd
3.10 m
(5/2+ )
%K+%β+=100
98Pd
17.7 m
0+
%K+%β+=100
99Pd
21.4 m
(5/2) +
%K+%β+=100
100Pd
3.63 d
0+
%K=100
101Pd
8.47 h
5/2+
%K+%β+=100
102Pd
stable
0+
%Abundance=1.02
103Pd
16.991 d
5/2+
%K=100
104Pd
stable
0+
%Abundance=11.14
105Pd
stable
5/2+
%Abundance=22.33
106Pd
stable
0+
%Abundance=27.33
107Pd
6.5e+6 a
5/2+
%β-=100
107m1Pd
21.3 s
11/2-
%IT=100
108Pd
stable
0+
%Abundance=26.46
109Pd
13.7012 h
5/2+
%β-=100
109m1Pd
4.696 m
11/2-
%IT=100
110Pd
stable
0+
%Abundance=11.72
111Pd
23.4 m
5/2+
%β-=100
111m1Pd
5.5 h
11/2-
%IT=73 , %β-=27
112Pd
21.03 h
0+
%β-=100
113Pd
93 s
(5/2+ )
%β-=100
113m1Pd
100 s
%β-=?
113m2Pd
0.3 s
(9/2-)
%IT=100
114Pd
2.42 m
0+
%β-=100
115Pd
25 s
(5/2+ )
%β-=100
115m1Pd
50 s
(11/2-)
%β-=92.0 , %IT=8.0
116Pd
11.8 s
0+
%β-=100
117Pd
4.3 s
(5/2+ )
%β-=100
117m1Pd
19.1 ms
(11/2-)
%IT=100
118Pd
1.9 s
0+
%β-=100
119Pd
0.92 s
%β-=100
120Pd
0.5 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
94Ag
10 ms
0+
%K+%β+=100
94m1Ag
0.42 s
(9+ )
%K+%β+=100, %Kp=?
95Ag
2.0 s
%K+%β+=100, %Kp=?
96Ag
5.1 s
(8+ , 9+ )
%K+%β+=100, %Kp=8.0
97Ag
19 s
(9/2+ )
%K+%β+=100
98Ag
46.7 s
(5+ )
%K+%β+=100
99Ag
124 s
(9/2) +
%K+%β+=100
99m1Ag
10.5 s
(1/2-)
%IT=100
100Ag
2.01 m
(5) +
%K+%β+=100
100m1Ag
2.24 m
(2) +
%K+%β+=?, %IT=?
101Ag
11.1 m
9/2+
%K+%β+=100
101m1Ag
3.10 s
(1/2) -
%IT=100
102Ag
12.9 m
5+
%K+%β+=100
102m1Ag
7.7 m
2+
%IT=49 , %K+%β+=51
103Ag
65.7 m
7/2+
%K+%β+=100
103m1Ag
5.7 s
1/2-
%IT=100
104Ag
69.2 m
5+
%K+%β+=100
104m1Ag
33.5 m
2+
%K+%β+=100, %IT < 0.07
105Ag
41.29 d
1/2-
%K+%β+=100
105m1Ag
7.23 m
7/2+
%IT=99.66 , %K+%β+=0.34
106Ag
23.96 m
1+
%K+β+=99.5 , %β- < 1
106m1Ag
8.28 d
6+
%K+β+=100
107Ag
stable
1/2-
%Abundance=51.839
107m1Ag
44.3 s
7/2+
%IT=100
108Ag
2.37 m
1+
%β-=97.15 , %K+%β+=2.85
108m1Ag
418 a
6+
%IT=8.7 , %K+%β+=91.3
109Ag
stable
1/2-
%Abundance=48.161
109m1Ag
39.6 s
7/2+
%IT=100
110Ag
24.6 s
1+
%β-=99.70 , %K=0.30
110m1Ag
249.79 d
6+
%β-=98.64 , %IT=1.36
111Ag
7.45 d
1/2-
%β-=100
111m1Ag
64.8 s
7/2+
%IT=99.3, %β-=0.7
112Ag
3.130 h
2(-)
%β-=100
113Ag
5.37 h
1/2-
%β-=100
113m1Ag
68.7 s
7/2+
%IT= 64 , %β-=36
114Ag
4.6 s
1+
%β-=100
114m1Ag
1.50 ms
(LE 6+ )
%IT=100
115Ag
20.0 m
1/2-
%β-=100
115m1Ag
18.0 s
7/2+
%β-=79.0 , %IT=21.0
116Ag
2.68 m
(2) -
%β-=100
116m1Ag
8.6 s
(5+ )
%IT=6.0 , %β-=94.0
117Ag
72.8 s
(1/2-)
%β-=100
117m1Ag
5.34 s
(7/2+ )
%β-=94.0 , %IT=6.0
118Ag
3.76 s
(1) -
%β-=100
118m1Ag
2.0 s
(4) +
%β-=59, %IT=41
119Ag
2.1 s
(7/2+ )
%β-=100
119m1Ag
6.0 s
(1/2-)
%β-=100
120Ag
1.23 s
(3+ )
%β-=100
120m1Ag
0.32 s
(6-)
%β- ~ 63, %IT ~ 37
121Ag
0.78 s
(7/2+ )
%β-=100 , %β-n=0.080
122Ag
0.48 s
(3+ )
%β-=100, %β-n=?
122m1Ag
1.5 s
%β-=100
123Ag
0.309 s
(7/2+ )
%β-=100, %β-n=55
124Ag
0.172 s
%β-=100 , %β-n > 0.1
125Ag
166 ms
%β-=100, %β-n=?
126Ag
107 ms
%β-=100
127Ag
109 ms
%β-=100
128Ag
58 ms
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
97Cd
3 s
%K+%β+=100, %Kp=?
98Cd
9.2 s
0+
%K+%β+=100
99Cd
16 s
(5/2+ )
%K+%β+=100, %Kp=0.17 +11-5, %Kα<1E-4
100Cd
49.1 s
0+
%K+%β+=100
101Cd
1.36 m
(5/2+ )
%K+%β+=100
102Cd
5.5 m
0+
%K+%β+=100
103Cd
7.3 m
(5/2+ )
%K+%β+=100
104Cd
57.7 m
0+
%K+%β+=100
105Cd
55.5 m
5/2+
%K+%β+ =100
106Cd
stable
0+
%Abundance=1.25
107Cd
6.50 h
5/2+
%K+%β+=100
108Cd
stable
0+
%Abundance=0.89
109Cd
462.6 d
5/2+
%K=100
110Cd
stable
0+
%Abundance=12.49
111Cd
stable
1/2+
%Abundance=12.80
111m1Cd
48.54 m
11/2-
%IT=100
112Cd
stable
0+
%Abundance=24.13
113Cd
7.7e+15 a
1/2+
%Abundance=12.22, %β-=100
113m1Cd
14.1 a
11/2-
%β-=99.86, %IT=0.14
114Cd
stable
0+
%Abundance=28.73
115Cd
53.46 h
1/2+
%β-=100
115m1Cd
44.6 d
11/2-
%β-=100
116Cd
stable
0+
%Abundance=7.49
117Cd
2.49 h
1/2+
%β-=100
117m1Cd
3.36 h
(11/2) -
%β-=100
118Cd
50.3 m
0+
%β-=100
119Cd
2.69 m
3/2+
%β-=100
119m1Cd
2.20 m
(11/2-)
%β-=100
120Cd
50.80 s
0+
%β-=100
121Cd
13.5 s
(3/2+ )
%β-=100
121m1Cd
8.3 s
(11/2-)
%β-=100
122Cd
5.24 s
0+
%β-=100
123Cd
2.10 s
(3/2) +
%β-=100
123m1Cd
1.82 s
(11/2-)
%β-=100
124Cd
1.25 s
0+
%β-=100
125Cd
0.65 s
(3/2+ )
%β-=100
125m1Cd
0.57 s
(11/2-)
%β-=100
126Cd
0.506 s
0+
%β-=100
127Cd
0.37 s
(3/2+ )
%β-=100
128Cd
0.34 s
0+
%β-=100
129Cd
0.27 s
(3/2+ )
%β-=100
130Cd
0.20 s
0+
%β-=100 , %β-n ~ 4
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
100In
7.0 s
%K+%β+=100, %Kp>3.9
101In
15.1 s
%K+%β+ ~ 100, %Kp=?
102In
22 s
(6+ )
%K+%β+=100, %Kp=0.0093
103In
65 s
(9/2) +
%K+%β+=100
103m1In
34 s
(1/2-)
%K+%β+=67, %IT=33
104In
1.80 m
(6+ )
%K+%β+=100
104m1In
15.7 s
(3+ )
%IT=80, %K+%β+=20
105In
5.07 m
(9/2) +
%K+%β+=100
105m1In
48 s
(1/2) -
%IT=100
106In
6.2 m
7+
%K+%β+=100
106m1In
5.2 m
(3+ )
%K+%β+=100
107In
32.4 m
9/2+
%K+%β+=100
107m1In
50.4 s
1/2-
%IT=100
108In
58.0 m
7+
%K+%β+=100
108m1In
39.6 m
2+
%K+%β+=100
109In
4.2 h
9/2+
%K+%β+=100
109m1In
1.34 m
1/2-
%IT=100
109m2In
0.209 s
(19/2+ )
%IT=100
110In
4.9 h
7+
%K+%β+=100
110m1In
69.1 m
2+
%K+%β+=100
111In
2.8047 d
9/2+
%K=100
111m1In
7.7 m
1/2-
%IT=100
112In
14.97 m
1+
%β-=44 , %K+%β+=56
112m1In
20.56 m
4+
%IT=100
113In
stable
9/2+
%Abundance=4.3
113m1In
1.6582 h
1/2-
%IT=100
114In
71.9 s
1+
%β-=99.50 , %K+%β+=0.50
114m1In
49.51 d
5+
%IT=96.75 , %K+%β+=3.25
114m2In
43.1 ms
8-
%IT=100
115In
4.41e+14 a
9/2+
%Abundance=95.7, %β-=100
115m1In
4.486 h
1/2-
%IT=95.0 , %β-=5.0
116In
14.10 s
1+
%β- > 99.94 , %K < 0.06
116m1In
54.29 m
5+
%β-=100
116m2In
2.18 s
8-
%IT=100
117In
43.2 m
9/2+
%β-=100
117m1In
116.2 m
1/2-
%β-=52.9 , %IT=47.1
118In
5.0 s
1+
%β-=100
118m1In
4.45 m
5+
%β-=100
118m2In
8.5 s
8-
%β-=1.4 , %IT=98.6
119In
2.4 m
9/2+
%β-=100
119m1In
18.0 m
1/2-
%β-=94.4 , %IT=5.6
120In
3.08 s
1+
%β-=100
120m1In
46.2 s
(3,4,5) +
%β-=100
120m2In
47.3 s
(8-)
%β-=100
121In
23.1 s
9/2+
%β-=100
121m1In
3.88 m
1/2-
%β-=98.8 , %IT=1.2
122In
1.5 s
1+
%β-=100
122m1In
10.3 s
5+
%β-=100
122m2In
10.8 s
8-
%β-=100
123In
5.98 s
9/2+
%β-=100
123m1In
47.8 s
1/2-
%β-=100
124In
3.11 s
3+
%β-=100
124m1In
3.7 s
(8-)
%β-=100
125In
2.36 s
9/2(+)
%β-=100
125m1In
12.2 s
1/2(-)
%β-=100
126In
1.60 s
3(+)
%β-=100
126m1In
1.64 s
7- ,8- ,9- %β-=100
127In
1.09 s
(9/2+ )
%β-=100, %β-n < 0.03
127m1In
3.67 s
(1/2-)
%β-=100, %β-n=0.69
128In
0.84 s
(3+ )
%β-=100, %β-n < 0.04
128m1In
0.72 s
(8-)
%β-=100, %β-n < 0.04
129In
0.61 s
(9/2+ )
%β-=100, %β-n=0.25
129m1In
1.23 s
(1/2-)
%β- > 99.7, %β-n=2.5 , %IT < 0.3
130In
0.32 s
1(-)
%β-=100 , %β-n=0.90
130m1In
0.55 s
(10- )
%β-=100 , %β-n < 1.67
130m2In
0.55 s
(5+ )
%β-=100 , %β-n < 1.67
131In
0.282 s
(9/2+ )
%β-=100, %β-n < 2.2
131m1In
0.35 s
(1/2-)
%β-=100, %β-n < 2.2 , %IT < 0.04
131m2In
0.32 s
(21/2+ )
%β-=100, %β-n < 2.2
132In
0.201 s
(7-)
%β-=100 , %β-n=6.2
133In
180 ms
(9/2+ )
%β-=100, %β-n=85
134In
138 ms
%β-=100, %β-n=65
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
100Sn
0.94 s
0+
%K+%β+=100, %Kp < 17
101Sn
3 s
%K+%β+=100, %Kp=?
102Sn
4.5 s
0+
%K+%β+=100
103Sn
7 s
%K+%β+=100
104Sn
20.8 s
0+
%K+%β+=100
105Sn
31 s
%K+%β+=100, %β+P=?
106Sn
115 s
0+
%K+%β+=100
107Sn
2.90 m
(5/2+ )
%K+%β+=100
108Sn
10.30 m
0+
%K+%β+=100
109Sn
18.0 m
5/2(+)
%K+%β+=100
110Sn
4.11 h
0+
%K=100
111Sn
35.3 m
7/2+
%K+%β+=100
112Sn
stable
0+
%Abundance=0.97
113Sn
115.09 d
1/2+
%K+%β+=100
113m1Sn
21.4 m
7/2+
%IT=91.1 , %K+%β+=8.9
114Sn
stable
0+
%Abundance=0.65
115Sn
stable
1/2+
%Abundance=0.34
116Sn
stable
0+
%Abundance=14.53
117Sn
stable
1/2+
%Abundance=7.68
117m1Sn
13.60 d
11/2-
%IT=100
118Sn
stable
0+
%Abundance=24.23
119Sn
stable
1/2+
%Abundance=8.59
119m1Sn
293.1 d
11/2-
%IT=100
120Sn
stable
0+
%Abundance=32.59
121Sn
27.06 h
3/2+
%β-=100
121m1Sn
55 a
11/2-
%IT=77.6 , %β-=22.4
122Sn
stable
0+
%Abundance=4.63
123Sn
129.2 d
11/2-
%β-=100
123m1Sn
40.06 m
3/2+
%β-=100
124Sn
stable
0+
%Abundance=5.79
125Sn
9.64 d
11/2-
%β-=100
125m1Sn
9.52 m
3/2+
%β-=100
126Sn
1e+5 a
0+
%β-=100
127Sn
2.10 h
(11/2-)
%β-=100
127m1Sn
4.13 m
(3/2+ )
%β-=100
128Sn
59.07 m
0+
%β-=100
128m1Sn
6.5 s
(7-)
%IT=100
129Sn
2.23 m
(3/2+ )
%β-=100
129m1Sn
6.9 m
(11/2-)
%β-=100, %IT ~ 2E-4
130Sn
3.72 m
0+
%β-=100
130m1Sn
1.7 m
(7-)
%β-=100
131Sn
56.0 s
(3/2+ )
%β-=100
131m1Sn
58.4 s
(11/2-)
%β-=100, %IT < 0.009
132Sn
39.7 s
0+
%β-=100
133Sn
1.45 s
(7/2-)
%β-=100, %β-n=0.08
134Sn
1.12 s
0+
%β-=100, %β-n=17
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
108Sb
7.4 s
(4+ )
%K+%β+=100, %Kp=?
109Sb
17.0 s
(5/2+ )
%K+%β+=100
110Sb
23.0 s
3+
%K+%β+=100
111Sb
75 s
(5/2+ )
%K+%β+=100
112Sb
51.4 s
3+
%K+%β+=100
113Sb
6.67 m
5/2+
%K+%β+=100
114Sb
3.49 m
3+
%K+%β+=100
115Sb
32.1 m
5/2+
%K+%β+=100
116Sb
15.8 m
3+
%K+%β+=100
116m1Sb
60.3 m
8-
%K+%β+=100
117Sb
2.80 h
5/2+
%K+%β+=100
118Sb
3.6 m
1+
%K+%β+=100
118m1Sb
5.00 h
8-
%K+%β+=100
119Sb
38.19 h
5/2+
%K=100
119m1Sb
0.85 s
(25/2+ )
%IT=100
120Sb
15.89 m
1+
%K+%β+=100
120m1Sb
5.76 d
8-
%K+%β+=100
121Sb
stable
5/2+
%Abundance=57.36
122Sb
2.7238 d
2-
%β-=97.59 , %K+%β+=2.41
122m1Sb
4.191 m
(8) -
%IT=100
123Sb
stable
7/2+
%Abundance=42.64
124Sb
60.20 d
3-
%β-=100
124m1Sb
93 s
5+
%IT=75 , %β-=25
124m2Sb
20.2 m
(8) -
%IT=100
125Sb
2.7582 a
7/2+
%β-=100
126Sb
12.46 d
(8) -
%β-=100
126m1Sb
19.15 m
(5) +
%β-=86 , %IT=14
126m2Sb
11 s
(3) -
%IT=100
127Sb
3.85 d
7/2+
%β-=100
128Sb
9.01 h
8-
%β-=100
128m1Sb
10.4 m
5+
%β-=96.4 , %IT=3.6
129Sb
4.40 h
7/2+
%β-=100
129m1Sb
17.7 m
(19/2-)
%β-=85, %IT=15
130Sb
39.5 m
(8-)
%β-=100
130m1Sb
6.3 m
(5) +
%β-=100
131Sb
23.03 m
(7/2+ )
%β-=100
132Sb
2.79 m
(4+ )
%β-=100
132m1Sb
4.10 m
(8-)
%β-=100
133Sb
2.5 m
(7/2+ )
%β-=100
134Sb
0.78 s
(0- )
%β-=100
134m1Sb
10.23 s
(7-)
%β-=100, %β-n=0.091
135Sb
1.71 s
(7/2+ )
%β-=100 , %β-n=16.4
136Sb
0.82 s
%β-=100, %β-n=24.0, %β-2n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
106Te
60 μs
0+
%α=100
107Te
3.1 ms
%α > 70, %K+%β+ < 30
108Te
2.1 s
0+
%K+%β+=51 , %α=49 , %β+P=2.4
109Te
4.6 s
%K+%β+=96.1 , %α=3.9 , %Kp=?
110Te
18.6 s
0+
%K+%β+ ~ 100, %α ~ 0.003
111Te
19.3 s
(5/2+ )
%K+%β+=100, %Kp=?
112Te
2.0 m
0+
%K+%β+=100
113Te
1.7 m
(7/2+ )
%K+%β+=100
114Te
15.2 m
0+
%K+%β+=100
115Te
5.8 m
7/2+
%K+%β+=100
115m1Te
6.7 m
(1/2) +
%K+%β+ < 100, %IT=?
116Te
2.49 h
0+
%K+%β+=100
117Te
62 m
1/2+
%K+%β+=100
117m1Te
103 ms
11/2-
%IT=100
118Te
6.00 d
0+
%K=100
119Te
16.03 h
1/2+
%K+%β+=100
119m1Te
4.70 d
11/2-
%K+%β+=100, %IT < 0.008
120Te
stable
0+
%Abundance=0.096
121Te
16.78 d
1/2+
%K+%β+=100
121m1Te
154 d
11/2-
%IT=88.6 , %K+%β+=11.4
122Te
stable
0+
%Abundance=2.603
123Te
1e+13 a
1/2+
%Abundance=0.908, %K=100
123m1Te
119.7 d
11/2-
%IT=100
124Te
stable
0+
%Abundance=4.816
125Te
stable
1/2+
%Abundance=7.139
125m1Te
57.40 d
11/2-
%IT=100
126Te
stable
0+
%Abundance=18.95
127Te
9.35 h
3/2+
%β-=100
127m1Te
109 d
11/2-
%IT=97.6 , %β-=2.4
128Te
2.2e24 a
0+
%Abundance=31.69, %ββ=100
129Te
69.6 m
3/2+
%β-=100
129m1Te
33.6 d
11/2-
%IT=63 , %β-=37
130Te
7.9e20 a
0+
%Abundance=33.80, %β- β -=100
131Te
25.0 m
3/2+
%β-=100
131m1Te
30 h
11/2-
%β-=77.8 , %IT=22.2
132Te
3.204 d
0+
%β-=100
133Te
12.5 m
(3/2+ )
%β-=100
133m1Te
55.4 m
(11/2-)
%IT=17.5 , %β-=82.5
134Te
41.8 m
0+
%β-=100
135Te
19.0 s
(7/2-)
%β-=100
136Te
17.5 s
0+
%β-=100, %β-n=1.1
137Te
2.49 s
(7/2-)
%β-=100, %β-n=2.69
138Te
1.4 s
0+
%β-=100, %β-n=6.3
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
108I
36 ms
(1)
%α=91 , %p < 1
109I
100 μs
%p ~ 100
110I
0.65 s
%K+%β+=83 , %α=17 , %Kp=11 , %Kα=1.1
111I
2.5 s
(5/2+ )
%K+%β+=99.9, %α ~ 0.1
112I
3.42 s
%K+%β+=100, %α ~ 0.0012
113I
6.6 s
(5/2+ )
%K+%β+=100, %Kα=?, %α =3.310E-7
114I
2.1 s
1+
%K+%β+= 100, %Kp=?
114m1I
6.2 s
(7)
%K+%β+=?, %IT=?
115I
1.3 m
(5/2+ )
%K+%β+=100
116I
2.91 s
1+
%K+%β+=100
116m1I
3.27 μs
(7-)
117I
2.22 m
(5/2) +
%K+%β+=100
118I
13.7 m
2-
%K+%β+=100
118m1I
8.5 m
(7-)
%K+%β+<100, %IT>0
119I
19.1 m
5/2+
%K+%β+=100
120I
81.0 m
2-
%K+%β+=100
120m1I
53 m
4 to 8
%K+%β+=100
121I
2.12 h
5/2+
%K+%β+=100
122I
3.63 m
1+
%K+%β+=100
122m1I
80 μs
123I
13.27 h
5/2+
%K+%β+=100
124I
4.1760 d
2-
%K+%β+=100
125I
59.408 d
5/2+
%K=100
126I
13.11 d
2-
%K+%β+=56.3 , %β-=43.7
127I
stable
5/2+
%Abundance=100
128I
24.99 m
1+
%β-=93.1 , %K+%β+=6.9
129I
1.57e7 a
7/2+
%β-=100
130I
12.36 h
5+
%β-=100
130m1I
9.0 m
2+
%IT=84 , %β-=16
131I
8.02070 d
7/2+
%β-=100
132I
2.295 h
4+
%β-=100
132m1I
1.387 h
(8-)
%IT=86 , %β-=14
133I
20.8 h
7/2+
%β-=100
133m1I
9 s
(19/2-)
%IT=100
134I
52.5 m
(4) +
%β-=100
134m1I
3.60 m
(8) -
%IT=97.7 , %β-=2.3
135I
6.57 h
7/2+
%β-=100
136I
83.4 s
(1-)
%β-=100
136m1I
46.9 s
(6-)
%β-=100
137I
24.5 s
(7/2+ )
%β-=100, %β-n=6.97
138I
6.49 s
(2-)
%β-=100, %β-n=5.5
139I
2.29 s
(7/2+ )
%β-=100, %β-n=9.9
140I
0.86 s
(4)
%β-=100 , %β-n=9.3
141I
0.43 s
%β-=100, %β-n=21.2
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
110Xe
0.60 μs
0+
%K+β+=?, %α=?
111Xe
0.74 s
%K+%β+=?, %α=?
112Xe
2.7 s
0+
%K+%β+=99.2, %α=0.8 +11- 5
113Xe
2.74 s
%K+%β+ ~ 100, %α ~ 0.011, %Kp=7 , %Kα ~ 0.007
114Xe
10.0 s
0+
%K+%β+=100
115Xe
18 s
(5/2+ )
%K+%β+=100, %Kp=0.34 , %Kα=0.0003
116Xe
59 s
0+
%K+%β+=100
117Xe
61 s
5/2(+)
%K+%β+=100, %Kp=0.0029
118Xe
3.8 m
0+
%K+%β+=100
119Xe
5.8 m
(5/2+ )
%K+%β+=100
120Xe
40 m
0+
%K+%β+=100
121Xe
40.1 m
5/2(+)
%K+%β+=100
122Xe
20.1 h
0+
%K=100
123Xe
2.08 h
(1/2) +
%K+%β+=100
124Xe
1.6e+14 a
0+
%Abundance=0.10, %KEC=100
125Xe
16.9 h
(1/2) +
%K+%β+=100
125m1Xe
57 s
(9/2) -
%IT=100
126Xe
stable
0+
%Abundance=0.09
127Xe
36.4 d
1/2+
%K=100
127m1Xe
69.2 s
9/2-
%IT=100
128Xe
stable
0+
%Abundance=1.91
129Xe
stable
1/2+
%Abundance=26.4
129m1Xe
8.88 d
11/2-
%IT=100
130Xe
stable
0+
%Abundance=4.1
131Xe
stable
3/2+
%Abundance=21.2
131m1Xe
11.84 d
11/2-
%IT=100
132Xe
stable
0+
%Abundance=26.9
132m1Xe
8.39 ms
(10+)
%IT=100
133Xe
5.243 d
3/2+
%β-=100
133m1Xe
2.19 d
11/2-
%IT=100
134Xe
stable
0+
%Abundance=10.4
134m1Xe
290 ms
7-
%IT=100
135Xe
9.14 h
3/2+
%β-=100
135m1Xe
15.29 m
11/2-
%IT=99.996 , %β-=0.004
136Xe
2.36e21 a
0+
%Abundance=8.9
137Xe
3.818 m
7/2-
%β-=100
138Xe
14.08 m
0+
%β-=100
139Xe
39.68 s
3/2-
%β-=100
140Xe
13.60 s
0+
%β-=100
141Xe
1.73 s
5/2(-)
%β-=100, %β-n=0.044
142Xe
1.22 s
0+
%β-=100, %β-n=0.406
143Xe
0.30 s
5/2-
%β-=100
144Xe
1.15 s
0+
%β-=100
145Xe
0.9 s
%β-=100, %β-n=?
146Xe
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
113Cs
17 μs
(5/2+ )
%p ~ 100, %K+%β+ ~ 0.03
114Cs
0.57 s
(1+ )
%K+%β+ ~ 100, %α=0.018 , %Kp=7 , %Kα=0.16
115Cs
1.4 s
%K+%β+=100, %Kp ~ 0.07
116Cs
3.84 s
>4+
%K+%β+=100, %Kp=0.44 , %Kα=0.08
116m1Cs
0.70 s
(1+ )
%K+%β+=100, %Kp=0.28 , %Kα=0.049
117Cs
8.4 s
(9/2+ )
%K+%β+=100
117m1Cs
6.5 s
(3/2+ )
%K+%β+=100
118Cs
14 s
2
%K+%β+=100, %Kp<4.2E-2 , %Kα<2.4E-3
118m1Cs
17 s
(7-)
%K+%β+=100, %Kp<4.2E-2 , %Kα<2.4E-3
119Cs
43.0 s
9/2+
%K+%β+=100
119m1Cs
30.4 s
3/2(+)
%K+%β+=100
120Cs
64 s
2
%K+%β+=100
120m1Cs
57 s
%K+%β+=100, %Kp=7E-6 , %Kα=2.0E-5
121Cs
155 s
3/2(+)
%K+%β+=100
121m1Cs
122 s
9/2(+)
%K+%β+=83, %IT=17
122Cs
21.0 s
1+
%K+%β+=100
122m1Cs
3.70 m
8-
%K+%β+=100
122m2Cs
0.36 s
(5) -
%IT=100
123Cs
5.94 m
1/2+
%K+%β+=100
123m1Cs
1.64 s
(11/2) -
%IT=100
124Cs
30.8 s
1+
%K+%β+=100
124m1Cs
6.3 s
(7) +
%IT=100
125Cs
45 m
(1/2+ )
%K+%β+=100
126Cs
1.64 m
1+
%K+%β+=100
127Cs
6.25 h
1/2+
%K+%β+=100
128Cs
3.66 m
1+
%K+%β+=100
129Cs
32.06 h
1/2+
%K+%β+=100
130Cs
29.21 m
1+
%K+%β+=98.4, %β-=1.6
130m1Cs
3.46 m
5-
%IT=99.84 , %K+%β+=0.16
131Cs
9.689 d
5/2+
%K=100
132Cs
6.479 d
2+
%K+%β+=98.13 , %β-=1.87
133Cs
stable
7/2+
%Abundance=100
134Cs
2.0648 a
4+
%β-=99.9997 , %K=0.0003
134m1Cs
2.903 h
8-
%IT=100
135Cs
2.3e+6 a
7/2+
%β-=100
135m1Cs
53 m
19/2-
%IT=100
136Cs
13.16 d
5+
%β-=100
136m1Cs
19 s
8-
%IT=?, %β-=?
137Cs
30.07 a
7/2+
%β-=100
138Cs
33.41 m
3-
%β-=100
138m1Cs
2.91 m
6-
%β-=19 , %IT=81
139Cs
9.27 m
7/2+
%β-=100
140Cs
63.7 s
1-
%β-=100
141Cs
24.94 s
7/2+
%β-=100, %β-n=0.029
142Cs
1.70 s
0-
%β-=100, %β-n=0.091
143Cs
1.78 s
3/2+
%β-=100, %β-n=1.62
144Cs
1.01 s
1
%β-=100, %β-n=3.17
144m1Cs
1 s
(GE 4)
%β-=?
145Cs
0.594 s
3/2+
%β-=100, %β-n=13.8
146Cs
0.321 s
1-
%β-=100 , %β-n=14.2
147Cs
0.225 s
(3/2+ )
%β-=100, %β-n=43
148Cs
158 ms
%β-=100, %β-n=25
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
114Ba
0.43 s
0+
%K+%β+ ~ 100, %α=?, %12C ~ 3E-5
115Ba
0.4 s
%K+%β+=100
116Ba
0.3 s
0+
%K+%β+=100
117Ba
1.75 s
(3/2)
%K+%β+=100, %Kp=?, %Kα=?
118Ba
5.5 s
0+
%K+%β+=100
119Ba
5.4 s
(5/2+ )
%K+%β+=100, %Kp < 25
120Ba
32 s
0+
%K+%β+=100
121Ba
29.7 s
5/2(+)
%K+%β+=100, %Kp=0.02
122Ba
1.95 m
0+
%K+%β+=100
123Ba
2.7 m
5/2+
%K+%β+=100
124Ba
11.0 m
0+
%K+%β+=100
125Ba
3.5 m
1/2(+)
%K+%β+=100
126Ba
100 m
0+
%K+%β+ =100
127Ba
12.7 m
1/2+
%K+%β+=100
127m1Ba
1.9 s
7/2-
%IT=100
128Ba
2.43 d
0+
%K=100
129Ba
2.23 h
1/2+
%K+%β+=100
129m1Ba
2.16 h
7/2+
%K+%β+ < 100, %IT=?
130Ba
stable
0+
%Abundance=0.106
130m1Ba
11 ms
8-
%IT=100
131Ba
11.50 d
1/2+
%K+%β+=100
131m1Ba
14.6 m
9/2-
%IT=100
132Ba
stable
0+
%Abundance=0.101
133Ba
10.51 a
1/2+
%K=100
133m1Ba
38.9 h
11/2-
%K=0.0096 , %IT=99.9904
134Ba
stable
0+
%Abundance=2.417
134m1Ba
2.63 μs
(10+)
135Ba
stable
3/2+
%Abundance=6.592
135m1Ba
28.7 h
11/2-
%IT=100
136Ba
stable
0+
%Abundance=7.854
136m1Ba
0.3084 s
7-
%IT=100
137Ba
stable
3/2+
%Abundance=11.23
137m1Ba
2.552 m
11/2-
%IT=100
138Ba
stable
0+
%Abundance=71.70
139Ba
83.06 m
7/2-
%β-=100
140Ba
12.752 d
0+
%β-=100
141Ba
18.27 m
3/2-
%β-=100
142Ba
10.6 m
0+
%β-=100
143Ba
14.33 s
5/2-
%β-=100
144Ba
11.5 s
0+
%β-=100, %β-n=3.6
145Ba
4.31 s
5/2-
%β-=100
146Ba
2.22 s
0+
%β-=100
147Ba
0.893 s
(3/2+ )
%β-=100, %β-n=0.06
148Ba
0.607 s
0+
%β-=100, %β-n=0.4
149Ba
0.344 s
%β-=100, %β-n=0.43
150Ba
0.3 s
0+
%β-=100, %β-n=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
120La
2.8 s
%K+%β+=100
121La
5.3 s
%K+%β+=100, %Kp=?
122La
8.7 s
%K+%β+=100, %Kp=?
123La
17 s
%K+%β+=100
124La
29 s
%K+%β+=100
124m1La
1 s
%K+%β+=100
125La
76 s
(11/2-)
%K+%β+=100
126La
54 s
%K+%β+=100
127La
5.1 m
(11/2-)
%K+%β+=100
127m1La
3.7 m
(3/2+ )
%K+%β+=100, %IT=?
128La
5.0 m
(5+ )
%K+%β+=100
128m1La
560 ms
(1+ , 2+ )
%K+%β+=100
129La
11.6 m
3/2+
%K+%β+=100
129m1La
0.56 s
11/2-
%IT=100
130La
8.7 m
3(+)
%K+%β+=100
131La
59 m
3/2+
%K+%β+=100
132La
4.8 h
2-
%K+%β+=100
132m1La
24.3 m
6-
%IT=76, %K+%β+=24
133La
3.912 h
5/2+
%K+%β+=100
134La
6.45 m
1+
%K+%β+=100
135La
19.5 h
5/2+
%K+%β+=100
136La
9.87 m
1+
%K+%β+=100
136m1La
114 ms
%IT=100
137La
6e4 a
7/2+
%K=100
138La
1.05e+11 a
5+
%Abundance=0.0902, %β-=33.6 , %K+%β+=66.4
139La
stable
7/2+
%Abundance=99.9098
140La
1.6781 d
3-
%β-=100
141La
3.92 h
(7/2+ )
%β-=100
142La
91.1 m
2-
%β-=100
143La
14.2 m
(7/2) +
%β-=100
144La
40.8 s
(3-)
%β-=100
145La
24.8 s
(5/2+ )
%β-=100
146La
6.27 s
2-
%β-=100
146m1La
10.0 s
(6-)
%β-=100
147La
4.015 s
(5/2+ )
%β-=100, %β-n=0.035
148La
1.05 s
(2-)
%β-=100 , %β-n=0.11
149La
1.05 s
%β-=100, %β-n=1.43
150La
0.86 s
%β-=100, %β-n=2.7
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
123Ce
3.2 s
(5/2)
%K+%β+=100, %Kp=?
124Ce
6 s
0+
%K+%β+=100
125Ce
9.0 s
(5/2+ )
%K+%β+=100, %Kp=?
126Ce
50 s
0+
%K+%β+=100
127Ce
31 s
(5/2+ )
%K+%β+=100
128Ce
4.1 s
0+
%K+%β+=100
129Ce
3.5 m
5/2+
%K+%β+=100
130Ce
25 m
0+
%K+%β+=100
131Ce
10.2 m
(7/2+ )
%K+%β+=100
131m1Ce
5.0 m
(1/2+ )
%K+%β+=100
132Ce
3.51 h
0+
%K+%β+=100
132m1Ce
13 ms
(8- ,9-)
%IT=100
133Ce
97 m
1/2+
%K+%β+=100
133m1Ce
4.9 h
9/2-
%K+%β+=100
134Ce
3.16 d
0+
%K=100
135Ce
17.7 h
1/2(+)
%K+%β+=100
135m1Ce
20 s
11/2(-)
%IT=100
136Ce
stable
0+
%Abundance=0.19
137Ce
9.0 h
3/2+
%K+%β+=100
137m1Ce
34.4 h
11/2-
%IT=99.22 , %K+%β+=0.78
138Ce
stable
0+
%Abundance=0.25
138m1Ce
8.65 ms
7-
%IT=100
139Ce
137.640 d
3/2+
%K=100
139m1Ce
54.8 s
11/2-
%IT=100
140Ce
stable
0+
%Abundance=88.48
141Ce
32.501 d
7/2-
%β-=100
142Ce
5e+16 a
0+
%Abundance=11.08
143Ce
33.039 h
3/2-
%β-=100
144Ce
284.893 d
0+
%β-=100
145Ce
3.01 m
(3/2) -
%β-=100
146Ce
13.52 m
0+
%β-=100
147Ce
56.4 s
(5/2-)
%β-=100
148Ce
56 s
0+
%β-=100
149Ce
5.3 s
(3/2-)
%β-=100
150Ce
4.0 s
0+
%β-=100
151Ce
1.02 s
%β-=100
152Ce
1.4 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
124Pr
1.2 s
%K+%β+=100, %Kp=?
125Pr
3.3 s
%K+%β+=100
126Pr
3.14 s
(3,4,5)
%K+%β+=100, %Kp=?
127Pr
4.2 s
(11/2-)
%K+%β+=100
128Pr
3.1 s
4,5,6
%K+%β+=100, %Kp=?
129Pr
30 s
(3/2+ )
%K+%β+=100
130Pr
40.0 s
%K+%β+=100
131Pr
1.53 m
(3/2+ )
%K+%β+=100
131m1Pr
5.7 s
(11/2-)
%IT=95 , %K+%β+=5
132Pr
1.6 m
%K+%β+=100
133Pr
6.5 m
(3/2+ )
%K+%β+=100
134Pr
17 m
2-
%K+%β+=100
134m1Pr
11 m
(5-)
%K+%β+=100
135Pr
24 m
3/2(+)
%K+%β+=100
136Pr
13.1 m
2+
%K+%β+=100
137Pr
1.28 h
5/2+
%K+%β+=100
138Pr
1.45 m
1+
%K+%β+=100
138m1Pr
2.12 h
7-
%K+%β+=100
139Pr
4.41 h
5/2+
%K+%β+=100
140Pr
3.39 m
1+
%K+β+=100
141Pr
stable
5/2+
%Abundance=100
142Pr
19.12 h
2-
%β-=99.9836 , %K=0.0164
142m1Pr
14.6 m
5-
%IT=100
143Pr
13.57 d
7/2+
%β-=100
144Pr
17.28 m
0-
%β-=100
144m1Pr
7.2 m
3-
%IT=99.93, %β-=0.07
145Pr
5.984 h
7/2+
%β-=100
146Pr
24.15 m
(2) -
%β-=100
147Pr
13.4 m
(3/2+ )
%β-=100
148Pr
2.27 m
1-
%β-=100
148m1Pr
2.0 m
(4)
%β-=100
149Pr
2.26 m
(5/2+ )
%β-=100
150Pr
6.19 s
(1) -
%β-=100
151Pr
18.90 s
(3/2-)
%β-=100
152Pr
3.63 s
(4-)
%β-=100
153Pr
4.28 s
%β-=100
154Pr
2.3 s
(3+ , 2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
127Nd
1.8 s
%K+%β+=100, %Kp=?
128Nd
4 s
0+
%K+%β+=100, %Kp=?
129Nd
7 s
(5/2+ )
%K+%β+=100, %Kp=?
130Nd
28 s
0+
%K+%β+=100
131Nd
27 s
(5/2)
%K+%β+=100 , %Kp=?
132Nd
1.75 m
0+
%β+=100
133Nd
70 s
(7/2+ )
%K+%β+=100
133m1Nd
70 s
(1/2) +
%K+%β+=?, %IT=?
134Nd
8.5 m
0+
%K+%β+=100
134m1Nd
410 μs
(8) -
135Nd
12.4 m
9/2(-)
%K+%β+=100
135m1Nd
5.5 m
(1/2+ )
%K+%β+=100
136Nd
50.65 m
0+
%K+%β+=100
137Nd
38.5 m
1/2+
%K+%β+=100
137m1Nd
1.60 s
11/2-
%IT=100
138Nd
5.04 h
0+
%K=100
139Nd
29.7 m
3/2+
%K+%β+=100
139m1Nd
5.50 h
11/2-
%K+%β+=88.2 , %IT=11.8
140Nd
3.37 d
0+
%K=100
141Nd
2.49 h
3/2+
%K+%β+=100
141m1Nd
62.0 s
11/2-
%IT > 99.95, %K+%β+ < 0.05
142Nd
stable
0+
%Abundance=27.13
143Nd
stable
7/2-
%Abundance=12.18
144Nd
2.29e+15 a
0+
%Abundance=23.80, %α=100
145Nd
stable
7/2-
%Abundance=8.30
146Nd
stable
0+
%Abundance=17.19
147Nd
10.98 d
5/2-
%β-=100
148Nd
stable
0+
%Abundance=5.76
149Nd
1.728 h
5/2-
%β-=100
150Nd
1.1e19 a
0+
%Abundance=5.64, %β- β-=?
151Nd
12.44 m
3/2+
%β-=100
152Nd
11.4 m
0+
%β-=100
153Nd
31.6 s
(3/2) -
%β-=100
154Nd
25.9 s
0+
%β-=100
155Nd
8.9 s
%β-=100
156Nd
5.47 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
132Pm
6.3 s
(3+ )
%K+%β+=100 , %Kp ~ 5E-5
133Pm
3/2+
%K+%β+=100
133m1Pm
15 s
11/2-
%K+%β+=100, %IT=?
134Pm
5 s
(2+ )
%K+%β+=100
134m1Pm
22 s
(5+ )
%K+%β+=100
135Pm
45 s
(11/2-)
%K+%β+=100
135m1Pm
49 s
(3/2+ , 5/2+ )
%K+%β+=100
136Pm
47 s
(2+ )
%K+%β+=100
136m1Pm
107 s
(5-)
%K+%β+=100
137Pm
2.4 m
11/2-
%K+%β+=100
138Pm
10 s
1+
%K+%β+=100
138m1Pm
3.24 m
(5-)
%K+%β+=?, %IT=?
139Pm
4.15 m
(5/2) +
%K+%β+=100
139m1Pm
180 ms
(11/2) -
%IT=99.94 +5-20, %K+%β+=0.06 +20-5
140Pm
9.2 s
1+
%K+%β+=100
140m1Pm
5.95 m
7-
%K+%β+=100
140m2Pm
5.95 m
8-
%K+%β+=100
141Pm
20.90 m
5/2+
%K+%β+=100
142Pm
40.5 s
1+
%K+%β+=100
142m1Pm
2.0 ms
(8) -
%IT=100
143Pm
265 d
5/2+
%K+%β+=100
144Pm
363 d
5-
%K+%β+=100
145Pm
17.7 a
5/2+
%K=100, %α=2.8E-7
146Pm
5.53 a
3-
%K=66.0 , %β-=34.0
147Pm
2.6234 a
7/2+
%β-=100
148Pm
5.370 d
1-
%β-=100
148m1Pm
41.29 d
6-
%β-=95.0 , %IT=5.0
149Pm
53.08 h
7/2+
%β-=100
150Pm
2.68 h
(1-)
%β-=100
151Pm
28.40 h
5/2+
%β-=100
152Pm
4.12 m
1+
%β-=100
152m1Pm
7.52 m
4-
%β-=100
152m2Pm
13.8 m
(8)
%β- < 100, %IT > 0
153Pm
5.25 m
5/2-
%β-=100
154Pm
1.73 m
(0,1)
%β-=100
154m1Pm
2.68 m
(3,4)
%β-=100
155Pm
41.5 s
(5/2-)
%β-=100
156Pm
26.70 s
4(-)
%β-=100
157Pm
10.56 s
(5/2-)
%β-=100
158Pm
4.8 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
131Sm
1.2 s
%K+%β+=100, %Kp=?
132Sm
4.0 s
0+
%K+%β+=100 , %Kp=?
133Sm
3.7 s
(5/2+ )
%K+%β+=100, %Kp=?
134Sm
10 s
0+
%K+%β+=100
135Sm
10.3 s
(7/2+ )
%K+%β+=100, %Kp=0.02
136Sm
47 s
0+
%K+%β+=100
137Sm
45 s
(9/2-)
%K+%β+=100
138Sm
3.1 m
0+
%K+%β+=100
139Sm
2.57 m
(1/2) +
%K+%β+=100
139m1Sm
10.7 s
(11/2) -
%IT=93.7 , %K+%β+=6.3
140Sm
14.82 m
0+
%K+%β+=100
141Sm
10.2 m
1/2+
%K+%β+=100
141m1Sm
22.6 m
11/2-
%K+%β+=99.69 , %IT=0.31
142Sm
72.49 m
0+
%K+%β+=100
143Sm
8.83 m
3/2+
%K+%β+=100
143m1Sm
66 s
11/2-
%IT=99.76 , %K+%β+=0.24
143m2Sm
30 ms
23/2(-)
%IT=100
144Sm
stable
0+
%Abundance=3.1
145Sm
340 d
7/2-
%K=100
146Sm
1.03e8 a
0+
%α=100
147Sm
1.06e+11 a
7/2-
%Abundance=15.0, %α=100
148Sm
7e+15 a
0+
%Abundance=11.3 , %α=100
149Sm
2e+15 a
7/2-
%Abundance=13.8
150Sm
stable
0+
%Abundance=7.4
151Sm
90 a
5/2-
%β-=100
152Sm
stable
0+
%Abundance=26.7
153Sm
46.284 h
3/2+
%β-=100
153m1Sm
10.6 ms
11/2-
%IT=100
154Sm
stable
0+
%Abundance=22.7
155Sm
22.3 m
3/2-
%β-=100
156Sm
9.4 h
0+
%β-=100
157Sm
482 s
(3/2-)
%β-=100
158Sm
5.30 m
0+
%β-=100
159Sm
11.37 s
(5/2-)
%β-=100
160Sm
9.6 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
134Eu
0.5 s
%K+%β+=100, %Kp > 0
135Eu
1.5 s
%K+%β+=100, %Kp=?
136Eu
3.3 s
(7+ )
%K+%β+=100, %Kp=0.09
136m1Eu
3.7 s
(3+ )
%K+%β+=100, %Kp=0.09
137Eu
11 s
(11/2-)
%K+%β+=100
138Eu
12.1 s
(6-)
%K+%β+=100
139Eu
17.9 s
(11/2) -
%K+%β+=100
140Eu
1.51 s
1+
%K+%β+=100
140m1Eu
125 ms
(5-)
%IT=100 , %K+%β+ < 1
141Eu
40.7 s
5/2+
%K+%β+=100
141m1Eu
2.7 s
11/2-
%K+%β+=13 +4-2 , %IT=87 +2-4
142Eu
2.34 s
1+
%K+%β+=100
142m1Eu
1.22 m
8-
%K+%β+=100
143Eu
2.63 m
5/2+
%K+%β+=100
144Eu
10.2 s
1+
%K+%β+=100
145Eu
5.93 d
5/2+
%K+%β+=100
146Eu
4.61 d
4-
%K+%β+=100
147Eu
24.1 d
5/2+
%K+β+=100, %α=0.0022
148Eu
54.5 d
5-
%K+%β+=100, %α=9.4E-7
149Eu
93.1 d
5/2+
%K=100
150Eu
36.9 a
5(-)
%K+%β+=100
150m1Eu
12.8 h
0-
%K+%β+=11 , %β-=89 , %IT < 5E-8
151Eu
stable
5/2+
%Abundance=47.8
152Eu
13.537 a
3-
%K=72.1 , %β-=27.9
152m1Eu
9.3116 h
0-
%K+%β+=28 , %β-=72
152m2Eu
96 m
8-
%IT=100
153Eu
stable
5/2+
%Abundance=52.2
154Eu
8.593 a
3-
%β-=99.98 , %K+%β+=0.02
154m1Eu
46.3 m
(8-)
%IT=100
155Eu
4.7611 a
5/2+
%β-=100
156Eu
15.19 d
0+
%β-=100
157Eu
15.18 h
5/2+
%β-=100
158Eu
45.9 m
(1-)
%β-=100
159Eu
18.1 m
5/2+
%β-=100
160Eu
38 s
1(-)
%β-=100
161Eu
26 s
%β-=100
162Eu
10.6 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
139Gd
4.9 s
9/2-
%K+%β+=?, %β+P=?
140Gd
15.8 s
0+
%K+%β+=100
141Gd
14 s
(1/2+ )
%K+%β+=100, %Kp=0.03
141m1Gd
24.5 s
(11/2-)
%K+%β+=89 , %IT=11
142Gd
70.2 s
0+
%K+%β+=100
143Gd
39 s
(1/2) +
%K+%β+=100, %Kp < 0.001
143m1Gd
112 s
(11/2-)
%K+%β+=100
144Gd
4.5 m
0+
%K+%β+=100
145Gd
23.0 m
1/2+
%K+%β+=100
145m1Gd
85 s
11/2-
%IT=94.3 , %K+%β+=5.7
146Gd
48.27 d
0+
%K=100
147Gd
38.06 h
7/2-
%K+%β+=100
148Gd
74.6 a
0+
%α=100
149Gd
9.28 d
7/2-
%K+%β+=100, %α=4.3E-4
150Gd
1.79e6 a
0+
%α=100
151Gd
124 d
7/2-
%K=100, %α ~ 8E-7
152Gd
1.08e14 a
0+
%Abundance=0.20, %α=100
153Gd
240.4 d
3/2-
%K=100
154Gd
stable
0+
%Abundance=2.18
155Gd
stable
3/2-
%Abundance=14.80
155m1Gd
31.97 ms
11/2-
%IT=100
156Gd
stable
0+
%Abundance=20.47
157Gd
stable
3/2-
%Abundance=15.65
158Gd
stable
0+
%Abundance=24.84
159Gd
18.479 h
3/2-
%β-=100
160Gd
stable
0+
%Abundance=21.86
161Gd
3.66 m
5/2-
%β-=100
162Gd
8.4 m
0+
%β-=100
163Gd
68 s
(5/2-)
%β-=100
164Gd
45 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
140Tb
2.4 s
5
%K+%β+=100, %p=0.26
141Tb
3.5 s
(5/2-)
%K+%β+=100
142Tb
597 ms
1+
%K+%β+=100 , %Kp=0.0022
142m1Tb
303 ms
(5-)
%IT=100, %K+%β+ < 0.5
143Tb
12 s
(11/2-)
%K+%β+=100
143m1Tb
21 s
(5/2+ )
144Tb
1 s
(1+ )
%K+%β+=100
144m1Tb
4.25 s
(6-)
%IT=66 , %K+%β+=34
145Tb
(1/2+ )
145m1Tb
29.5 s
(11/2-)
%K+%β+=100
146Tb
8 s
1+
%K+%β+=100
146m1Tb
23 s
5-
%K+%β+=100
146m2Tb
1.18 ms
(10+)
%IT=100
147Tb
1.7 h
(1/2+ )
%K+%β+=100
147m1Tb
1.83 m
(11/2) -
%K+%β+=100
148Tb
60 m
2-
%K+%β+=100
148m1Tb
2.20 m
9+
%K+%β+=100
149Tb
4.118 h
1/2+
%K+%β+=83.3 , %α=16.7
149m1Tb
4.16 m
11/2-
%K+%β+=99.978 , %α=0.022
150Tb
3.48 h
(2-)
%K+%β+=100, %α<0.05
150m1Tb
5.8 m
9+
%K+%β+=100
151Tb
17.609 h
1/2(+)
%K+%β+=100 , %α=9.5E-3
151m1Tb
25 s
(11/2-)
%IT=93.8 , %K+%β+=6.2
152Tb
17.5 h
2-
%K+%β+=100, %α < 7E-7
152m1Tb
4.2 m
8+
%IT=78.8 , %K+%β+=21.2
153Tb
2.34 d
5/2+
%K+%β+=100
154Tb
21.5 h
0
%K+%β+=100, %β- < 0.1
154m1Tb
9.4 h
3-
%K+%β+=78.2 , %IT=21.8 , %β- < 0.1
154m2Tb
22.7 h
7-
%K+%β+=98.2 , %IT=1.8
154m3Tb
513 ns
155Tb
5.32 d
3/2+
%K=100
156Tb
5.35 d
3-
%K+%β+=100 , %β-=?
156m1Tb
24.4 h
(7-)
%IT=100
156m2Tb
5.3 h
(0+)
%IT=?, %K+%β+=?
157Tb
71 a
3/2+
%K=100
158Tb
180 a
3-
%K+%β+=83.4 , %β-=16.6
158m1Tb
10.70 s
0-
%IT=100, %β- < 0.6, %K+%β+ < 0.01
159Tb
stable
3/2+
%Abundance=100
160Tb
72.3 d
3-
%β-=100
161Tb
6.88 d
3/2+
%β-=100
162Tb
7.60 m
1-
%β-=100
163Tb
19.5 m
3/2+
%β-=100
164Tb
3.0 m
(5+ )
%β-=100
165Tb
2.11 m
(3/2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
141Dy
0.9 s
(9/2-)
%K+%β+=100 , %Kp=?
142Dy
2.3 s
0+
%K+%β+=100, %Kp=0.06
143Dy
4.1 s
(1/2+ )
%K+%β+=100, %Kp=?
144Dy
9.1 s
0+
%K+%β+=100, %Kp=?
145Dy
10 s
(1/2+ )
%K+%β+=100
145m1Dy
13.6 s
(11/2-)
%K+%β+=100
146Dy
29 s
0+
%K+%β+=100
146m1Dy
150 ms
(10+)
%IT=100
147Dy
40 s
1/2+
%K+%β+=100, %Kp=?
147m1Dy
55 s
11/2-
%K+%β+=65 , %IT=35
148Dy
3.1 m
0+
%K+%β+=100
149Dy
4.20 m
(7/2-)
%K+%β+=100
149m1Dy
490 ms
(27/2-)
%IT=99.3 , %K+%β+=0.7
150Dy
7.17 m
0+
%α=36 , %K+%β+=64
151Dy
17.9 m
7/2(-)
%K+%β+=94.4 , %α=5.6
152Dy
2.38 h
0+
%α=0.100 , %K=99.900
153Dy
6.4 h
7/2(-)
%K+%β+=99.9906 , %α=0.0094
154Dy
3.0e+6 a
0+
%α=100
155Dy
9.9 h
3/2-
%K+%β+=100
156Dy
stable
0+
%Abundance=0.06
157Dy
8.14 h
3/2-
%K+%β+=100
157m1Dy
21.6 ms
11/2-
%IT=100
158Dy
stable
0+
%Abundance=0.10
159Dy
144.4 d
3/2-
%K=100
160Dy
stable
0+
%Abundance=2.34
161Dy
stable
5/2+
%Abundance=18.9
162Dy
stable
0+
%Abundance=25.5
163Dy
stable
5/2-
%Abundance=24.9
164Dy
stable
0+
%Abundance=28.2
165Dy
2.334 h
7/2+
%β-=100
165m1Dy
1.257 m
1/2-
%IT=97.76 , %β-=2.24
166Dy
81.6 h
0+
%β-=100
167Dy
6.20 m
(1/2-)
%β-=100
168Dy
8.7 m
0+
%β-=100
169Dy
39 s
(5/2-)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
144Ho
0.7 s
%K+%β+=100, %Kp=?
145Ho
2.4 s
(11/2-)
%K+%β+=100
146Ho
3.6 s
(10+)
%K+%β+=100, %Kp=?
147Ho
5.8 s
(11/2-)
%K+%β+=100, %Kp=?
148Ho
2.2 s
1+
%K+%β+=100
148m1Ho
9.59 s
6-
%K+%β+=100, %Kp=0.08
148m2Ho
2.35 ms
(10+)
%IT=100
149Ho
21.1 s
(11/2-)
%K+%β+=100
149m1Ho
56 s
(1/2+ )
%K+%β+=100
150Ho
72 s
2-
%K+%β+=100
150m1Ho
23.3 s
(9) +
%K+%β+=100
151Ho
35.2 s
(11/2-)
%K+%β+=78 , %α=22
151m1Ho
47.2 s
(1/2+ )
%α=80 +15-20, %K+%β+=20 +20- 15
152Ho
161.8 s
2-
%α=12 , %K+%β+=88
152m1Ho
50.0 s
9+
%α=10.8 , %K+%β+=89.2
153Ho
2.01 m
11/2-
%K+%β+=99.949 , %α=0.051
153m1Ho
9.3 m
1/2+
%K+%β+=99.82 , %α=0.18
154Ho
11.76 m
(2) -
%K+%β+=99.981 , %α=0.019
154m1Ho
3.10 m
8+
%K+%β+=100, %α < 0.001
155Ho
48 m
5/2+
%K+%β+=100
156Ho
56 m
(4+ )
%K+%β+=100
156m1Ho
9.5 s
(1+ )
%IT=?, %K+%β+=?
157Ho
12.6 m
7/2-
%K+%β+=100
158Ho
11.3 m
5+
%K+%β+=100
158m1Ho
28 m
2-
%K+%β+ < 19, %IT > 81
158m2Ho
21.3 m
(9+ )
%K+%β+ > 93, %IT < 7
159Ho
33.05 m
7/2-
%K+%β+=100
159m1Ho
8.30 s
1/2+
%IT=100
160Ho
25.6 m
5+
%K+%β+=100
160m1Ho
5.02 h
2-
%IT=65 , %K+%β+=35
160m2Ho
3 s
(9+ )
%IT=100
161Ho
2.48 h
7/2-
%K=100
161m1Ho
6.76 s
1/2+
%IT=100
162Ho
15.0 m
1+
%K+%β+=100
162m1Ho
67.0 m
6-
%IT=62, %K+%β+=38
163Ho
4570 a
7/2-
%K=100
163m1Ho
1.09 s
1/2+
%IT=100
164Ho
29 m
1+
%K=60 , %β-=40
164m1Ho
37.5 m
6-
%IT=100
165Ho
stable
7/2-
%Abundance=100
166Ho
26.83 h
0-
%β-=100
166m1Ho
1.20e3 a
(7) -
%β-=100
167Ho
3.1 h
7/2-
%β-=100
168Ho
2.99 m
3+
%β-=100
168m1Ho
132 s
(6+ )
%IT > 99.5, %β- < 0.5
169Ho
4.7 m
7/2-
%β-=100
170Ho
2.76 m
(6+ )
%β-=100
170m1Ho
43 s
(1+ )
%β-=100
171Ho
53 s
(7/2-)
%β-=100
172Ho
25 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
145Er
0.9 s
(11/2-)
%K+%β+=100, %Kp=?
146Er
1.7 s
0+
%K+%β+=100, %Kp=?
147Er
2.5 s
(11/2-)
%K+%β+=100, %Kp=?
147m1Er
2.5 s
(1/2+ )
%K+%β+=100, %Kp=?
148Er
4.6 s
0+
%K+%β+=100, %Kp ~ 0.15
149Er
4 s
(1/2+ )
%K+%β+=100, %Kp=7
149m1Er
8.9 s
(11/2-)
%K+%β+=96.5 , %IT=3.5 , %Kp=0.18
150Er
18.5 s
0+
%K+%β+=100
151Er
23.5 s
(7/2-)
%K+%β+=100
151m1Er
0.58 s
(27/2-)
%IT=95.3 , %K+%β+=4.7
152Er
10.3 s
0+
%K+%β+=10 , %α=90
153Er
37.1 s
(7/2-)
%α=53 , %K+%β+=47
154Er
3.73 m
0+
%K+%β+=99.53 , %α=0.47
155Er
5.3 m
7/2-
%K+%β+=99.978 , %α=0.022
156Er
19.5 m
0+
%K+%β+=100
157Er
18.65 m
3/2-
%K+%β+=100
157m1Er
76 ms
(9/2+ )
%IT=100
158Er
2.29 h
0+
%K=100
159Er
36 m
3/2-
%K+%β+=100
160Er
28.58 h
0+
%K=100
161Er
3.21 h
3/2-
%K+%β+=100
162Er
stable
0+
%Abundance=0.14
163Er
75.0 m
5/2-
%K+%β+=100
164Er
stable
0+
%Abundance=1.61
165Er
10.36 h
5/2-
%K=100
166Er
stable
0+
%Abundance=33.6
167Er
stable
7/2+
%Abundance=22.95
167m1Er
2.269 s
1/2-
%IT=100
168Er
stable
0+
%Abundance=26.8
169Er
9.40 d
1/2-
%β-=100
170Er
stable
0+
%Abundance=14.9
171Er
7.516 h
5/2-
%β-=100
172Er
49.3 h
0+
%β-=100
173Er
1.4 m
(7/2-)
%β-=100
174Er
3.3 m
0+
%β-=100
175Er
1.2 m
(9/2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
146Tm
235 ms
(10+)
%K+%β+ ~ 55, %p ~ 45
146m1Tm
72 ms
(5- ,6-)
%p=100, %K+%β+=?
147Tm
0.56 s
(11/2-)
%K+%β+ ~ 90, %p ~ 10
147m1Tm
360 μs
(1/2+,3/2+ )
148Tm
0.7 s
(10+ )
%K+%β+=100
149Tm
0.9 s
(11/2-)
%K+%β+=100, %Kp=0.2 +2-1
150Tm
2.2 s
(6-)
%K+%β+=100, %Kp=1.2
150m1Tm
5.2 ms
(10+)
%IT=100
151Tm
4.17 s
(11/2-)
%K+%β+=100
151m1Tm
6.6 s
(1/2+ )
%K+%β+=100
152Tm
8.0 s
(2) -
%K+%β+=100
152m1Tm
5.2 s
(9) +
%K+%β+=100
153Tm
1.48 s
(11/2-)
%α=91 , %K+%β+=9
153m1Tm
2.5 s
(1/2+ )
%α=92 , %K+%β+=8
154Tm
8.1 s
(2-)
%K+%β+=56 , %α=44
154m1Tm
3.30 s
(9+ )
%α=90 sys%K+%β+=10 sys%IT=?
155Tm
21.6 s
(11/2-)
%K+%β+=98.1 , %α=1.9
155m1Tm
45 s
(1/2+ )
%K+%β+>92, %α<8
156Tm
83.8 s
2-
%K+%β+=99.936 , %α=0.064
156m1Tm
19 s
%α=?
157Tm
3.63 m
1/2+
%K+%β+=100
158Tm
3.98 m
2-
%K+%β+=100
158m1Tm
20 ns
(5+ )
158m2Tm
16 ns
(9-)
159Tm
9.13 m
5/2+
%K+%β+=100
160Tm
9.4 m
1-
%K+%β+=100
160m1Tm
74.5 s
5
%K+%β+=15 , %IT=85
161Tm
33 m
7/2+
%K+%β+=100
162Tm
21.70 m
1-
%K+%β+=100
162m1Tm
24.3 s
5+
%IT=82 , %K+%β+=18
163Tm
1.810 h
1/2+
%K+%β+=100
164Tm
2.0 m
1+
%K+%β+=100
164m1Tm
5.1 m
6-
%IT ~ 80, %K+%β+ ~ 20
165Tm
30.06 h
1/2+
%K+%β+=100
166Tm
7.70 h
2+
%K+%β+=100
166m1Tm
350 ms
6-
%IT=100
167Tm
9.25 d
1/2+
%K=100
168Tm
93.1 d
3(+)
%K+%β+=99.990 , %β-=0.010
169Tm
stable
1/2+
%Abundance=100
170Tm
128.6 d
1-
%K=0.131 , %β-=99.869
171Tm
1.92 a
1/2+
%β-=100
172Tm
63.6 h
2-
%β-=100
173Tm
8.24 h
(1/2+ )
%β-=100
174Tm
5.4 m
(4) -
%β-=100
175Tm
15.2 m
1/2+
%β-=100
176Tm
1.9 m
(4+ )
%β-=100
177Tm
85 s
(1/2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
151Yb
1.6 s
(1/2+ )
%K+%β+=100, %Kp=?
151m1Yb
1.6 s
(11/2-)
%K+%β+ ~ 100, %Kp=?
152Yb
3.04 s
0+
%K+%β+=100, %Kp=?
153Yb
4.2 s
7/2-
%α=50 sys %K+%β+=50 sys
154Yb
0.409 s
0+
%α=92.6 , %K+%β+=7.4
155Yb
1.800 s
(7/2-)
%α=89 , %K+%β+=11
156Yb
26.1 s
0+
%K+%β+=90 , %α=10
157Yb
38.6 s
7/2-
%K+%β+=99.5, %α=0.5
158Yb
1.49 m
0+
%α ~ 0.0021 , %K+%β+=100
159Yb
1.58 m
5/2(-)
%K+%β+=100
160Yb
4.8 m
0+
%K+%β+=100
161Yb
4.2 m
3/2-
%K+%β+=100
162Yb
18.87 m
0+
%K+%β+=100
163Yb
11.05 m
3/2-
%K+%β+=100
164Yb
75.8 m
0+
%K=100
165Yb
9.9 m
5/2-
%K+%β+=100
166Yb
56.7 h
0+
%K=100
167Yb
17.5 m
5/2-
%K+%β+=100
168Yb
stable
0+
%Abundance=0.13
169Yb
32.026 d
7/2+
%K=100
169m1Yb
46 s
1/2-
%IT=100
170Yb
stable
0+
%Abundance=3.05
171Yb
stable
1/2-
%Abundance=14.3
171m1Yb
5.25 ms
7/2+
%IT=100
172Yb
stable
0+
%Abundance=21.9
173Yb
stable
5/2-
%Abundance=16.12
174Yb
stable
0+
%Abundance=31.8
175Yb
4.185 d
7/2-
%β-=100
175m1Yb
68.2 ms
1/2-
%IT=100
176Yb
stable
0+
%Abundance=12.7
176m1Yb
11.4 s
(8-)
%IT > 90, %β- < 10
177Yb
1.911 h
(9/2+ )
%β-=100
177m1Yb
6.41 s
(1/2-)
%IT=100
178Yb
74 m
0+
%β-=100
179Yb
8.0 m
(1/2-)
%β-=100
180Yb
2.4 m
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
150Lu
35 ms
%p=80 , %K+%β+=20
151Lu
88 ms
(11/2-)
%p=70
152Lu
0.7 s
(5- ,6-)
%K+%β+=100, %Kp=15
153Lu
0.9 s
11/2-
%α ~ 70 , %K+%β+ ~ 30
154Lu
(2-)
154m1Lu
1.12 s
(9+ )
%K+%β+ ~ 100
154m2Lu
35 μs
(17+ )
155Lu
140 ms
(1/2+ , 3/2+ )
%α=?
155m1Lu
68 ms
(11/2-)
%α=79 , %K+%β+=21
155m2Lu
2.60 ms
(25/2-)
%α ~ 100
156Lu
198 ms
(9+ )
%α ~ 95 , %K+%β+=5
156m1Lu
494 ms
(2-)
%α=79 , %K+%β+=21
157Lu
6.8 s
(1/2+ , 3/2+ )
%α > 0
157m1Lu
4.79 s
(11/2-)
%α=6 , %K+%β+=94
158Lu
10.6 s
%α=0.91 , %K+%β+=99.09
159Lu
12.1 s
%K+%β+=99.96 sys%α=0.04 sys
160Lu
36.1 s
%K+%β+=100, %α < 1E-4
160m1Lu
40 s
%K+%β+ < 100, %α=?
161Lu
77 s
(5/2+ )
%K+%β+=100
161m1Lu
7.3 ms
(9/2-)
%IT=100
162Lu
1.37 m
(1-)
%K+%β+=100
162m1Lu
1.5 m
(4-)
%K+%β+ < 100
162m2Lu
1.9 m
%K+%β+ < 100
163Lu
238 s
(1/2-)
%K+%β+=100
164Lu
3.14 m
%K+%β+=100
165Lu
10.74 m
(7/2+ )
%K+%β+=100
165m1Lu
12 m
1/2+
166Lu
2.65 m
(6-)
%K+%β+=100
166m1Lu
1.41 m
(3-)
%K+%β+=58 , %IT=42
166m2Lu
2.12 m
(0- )
%K+%β+>80, %IT<20
167Lu
51.5 m
7/2+
%K+%β+=100
168Lu
5.5 m
(6-)
%K+%β+=100
168m1Lu
6.7 m
3+
%K+%β+ > 95, %IT < 5
169Lu
34.06 h
7/2+
%K+%β+=100
169m1Lu
160 s
1/2-
%IT=100
170Lu
2.012 d
0+
%K+%β+=100
170m1Lu
0.67 s
(4) -
%IT=100
171Lu
8.24 d
7/2+
%K+%β+=100
171m1Lu
79 s
1/2-
%IT=100
172Lu
6.70 d
4-
%K+%β+=100
172m1Lu
3.7 m
1-
%IT=100
173Lu
1.37 a
7/2+
%K=100
174Lu
3.31 a
(1) -
%K+%β+=100
174m1Lu
142 d
(6) -
%IT=99.38 , %K=0.62
175Lu
stable
7/2+
%Abundance=97.41
176Lu
3.78e10 a
7-
%Abundance=2.59, %β-=100
176m1Lu
3.635 h
1-
%β-=99.905 , %K=0.095
177Lu
6.734 d
7/2+
%β-=100
177m1Lu
160.4 d
23/2-
%β-=78.3 , %IT=21.7
178Lu
28.4 m
1(+)
%β-=100
178m1Lu
23.1 m
(9-)
%β-=100
179Lu
4.59 h
7/2(+)
%β-=100
179m1Lu
3.1 ms
1/2(+)
%IT=100
180Lu
5.7 m
(5) +
%β-=100
181Lu
3.5 m
(7/2+ )
%β-=100
182Lu
2.0 m
(0,1,2)
%β-=100
183Lu
58 s
(7/2+ )
%β-=100
184Lu
20 s
(2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
154Hf
2 s
0+
%K+%β+=100
155Hf
0.89 s
%K+%β+=100, %α=?
156Hf
25 ms
0+
%α > 81
156m1Hf
444 μs
157Hf
110 ms
7/2-
%α=86 , %K+%β+=14
158Hf
2.85 s
0+
%α=44 , %K+%β+=56
159Hf
5.6 s
%K+%β+=59 , %α=41
160Hf
13.6 s
0+
%K+%β+=99.3 , %α=0.7
161Hf
16.8 s
(13/2+ )
%K+%β+=99.71 , %α=0.29
162Hf
37.6 s
0+
%K+%β+=99.9937 , %α=0.0063
163Hf
40.0 s
%K+%β+=100
164Hf
111 s
0+
%K+%β+=100
165Hf
76 s
(5/2-)
%K+%β+=100
166Hf
6.77 m
0+
%K+%β+=100
167Hf
2.05 m
(5/2-)
%K+%β+=100
168Hf
25.95 m
0+
%K+%β+=100
169Hf
3.24 m
(5/2) -
%K+%β+=100
170Hf
16.01 h
0+
%K=100
171Hf
12.1 h
(7/2+ )
%K+%β+=100
172Hf
1.87 a
0+
%K=100
173Hf
23.6 h
1/2-
%K+%β+=100
174Hf
2.0e15 a
0+
%Abundance=0.162, %α=100
175Hf
70 d
5/2-
%K=100
176Hf
stable
0+
%Abundance=5.206
177Hf
stable
7/2-
%Abundance=18.606
177m1Hf
1.08 s
23/2+
%IT=100
177m2Hf
51.4 m
37/2-
%IT=100
178Hf
stable
0+
%Abundance=27.297
178m1Hf
4.0 s
8-
%IT=100
178m2Hf
31 a
16+
%IT=100
179Hf
stable
9/2+
%Abundance=13.629
179m1Hf
18.67 s
1/2-
%IT=100
179m2Hf
25.05 d
25/2-
%IT=100
180Hf
stable
0+
%Abundance=35.100
180m1Hf
5.5 h
8-
%IT=99.7 , %β-=0.3
181Hf
42.39 d
1/2-
%β-=100
182Hf
9e6 a
0+
%β-=100
182m1Hf
61.5 m
8-
%β-=58 , %IT=42
183Hf
1.067 h
(3/2-)
%β-=100
184Hf
4.12 h
0+
%β-=100
184m1Hf
48 s
(8-)
%IT=100
185Hf
3.5 m
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
156Ta
144 ms
(2-)
%p ~ 100
156m1Ta
375 ms
(9+ )
%K+%β+=95.8 , %p=4.2
157Ta
10.1 ms
1/2+
%α=96.6 , %p=3.4
157m1Ta
4.3 ms
11/2-
%K+%β+ ~ 5
158Ta
36.5 ms
(2-)
%α=93 , %K+%β+=7
158m1Ta
49 ms
(9+ )
%α ~ 100
159Ta
0.57 s
%α=80 , %K+%β+=20
160Ta
1.55 s
(9+ )
%K+%β+=66, %α=34
160m1Ta
1.7 s
(2-)
%α=?
161Ta
2.7 s
%K+%β+ ~ 95, %α ~ 5
162Ta
3.52 s
%K+%β+=99.926 , %α=0.074
163Ta
10.6 s
%K+%β+ ~ 99.8, %α ~ 0.2
164Ta
14.2 s
(3+ )
%K+%β+=100
165Ta
31.0 s
%K+%β+=100
166Ta
34.4 s
(2) +
%K+%β+=100
167Ta
1.4 m
(3/2+ )
%K+%β+=100
168Ta
2.0 m
(3+ )
%K+%β+=100
169Ta
4.9 m
(5/2-)
%K+%β+=100
170Ta
6.76 m
(3+ )
%K+%β+=100
171Ta
23.3 m
(5/2-)
%K+%β+=100
172Ta
36.8 m
(3+ )
%K+%β+=100
173Ta
3.14 h
5/2-
%K+%β+=100
174Ta
1.05 h
3+
%K+%β+=100
174m1Ta
250 ns
175Ta
10.5 h
7/2+
%K+%β+=100
176Ta
8.09 h
(1) -
%K+%β+=100
176m1Ta
1.1 ms
(+)
%IT=100
176m2Ta
1.4 ms
(20- )
177Ta
56.56 h
7/2+
%K+%β+=100
178Ta
9.31 m
1+
%K+%β+=100
178m1Ta
2.36 h
(7) -
%K+%β+=100
178m2Ta
60 ms
(15-)
%IT=100
179Ta
1.82 a
7/2+
%K=100
179m1Ta
9.0 ms
(25/2+ )
179m2Ta
52 ms
(37/2+ )
180Ta
8.152 h
1+
%Abundance=0.012, %K=86 , %β-=14
180m1Ta
1.2e+15 a
9-
181Ta
stable
7/2+
%Abundance=99.988
182Ta
114.43 d
3-
%β-=100
182m1Ta
283 ms
5+
%IT=100
182m2Ta
15.84 m
10-
%IT=100
183Ta
5.1 d
7/2+
%β-=100
184Ta
8.7 h
(5-)
%β-=100
185Ta
49.4 m
(7/2+ )
%β-=100
186Ta
10.5 m
(2- ,3-)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
158W
0.9 ms
0+
%α=100
158m1W
0.16 ms
8+
159W
7.3 ms
%α ~ 99.5, %K+%β+ ~ 0.5
160W
91 ms
0+
%α=87 , %K+%β+=?
161W
410 ms
%α=82
162W
1.39 s
0+
%K+%β+=53 , %α=47
163W
2.75 s
%K+%β+=59 , %α=41
164W
6.0 s
0+
%K+%β+=95.6 , %α=4.4
165W
5.1 s
%K+%β+=100 , %α < 0.2
166W
18.8 s
0+
%K+%β+=99.965 , %α=0.035
167W
19.9 s
(7/2-)
%K+%β+=?, %α=?
168W
53 s
0+
%K+%β+ ~ 100, %α=2.7E-3
169W
76 s
(5/2-)
%K+%β+=100
170W
2.42 m
0+
%K+%β+=100
171W
2.38 m
(5/2-)
%K+%β+=100
172W
6.6 m
0+
%K+%β+=100
173W
7.6 m
5/2-
%K+%β+=100
174W
31 m
0+
%K+%β+=100
175W
35.2 m
(1/2-)
%K+%β+=100
176W
2.5 h
0+
%K=100
177W
135 m
(1/2-)
%K+%β+=100
178W
21.6 d
0+
%K=100
179W
37.05 m
(7/2) -
%K+%β+=100
179m1W
6.40 m
(1/2) -
%IT=99.72 , %K+%β+=0.28
180W
stable
0+
%Abundance=0.13
180m1W
5.47 ms
8-
%IT=100
181W
121.2 d
9/2+
%K=100
182W
stable
0+
%Abundance=26.3
183W
1.1e+17 a
1/2-
%Abundance=14.3
183m1W
5.2 s
11/2+
%IT=100
184W
3e+17 a
0+
%Abundance=30.67
185W
75.1 d
3/2-
%β-=100
185m1W
1.67 m
11/2+
%IT=100
186W
stable
0+
%Abundance=28.6
187W
23.72 h
3/2-
%β-=100
188W
69.4 d
0+
%β-=100
189W
11.5 m
(3/2-)
%β-=100
190W
30.0 m
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
160Re
0.79 ms
%p=91 , %α=9
161Re
0.37 ms
(1/2+ )
%p=100
161m1Re
16 ms
(11/2-)
%α=95.2 , %p=4.8
162Re
107 ms
(2-)
%α=94
162m1Re
75 ms
(9+ )
%α=91
163Re
260 ms
%α=64 , %K+%β+=36
164Re
0.38 s
%K+%β+ ~ 100
164m1Re
0.88 s
%α=?
165Re
2.4 s
%K+%β+=87 , %α=13
166Re
2.8 s
%α < 8
167Re
6.1 s
%K+%β+ ~ 99.3, %α ~ 0.7
168Re
4.4 s
(6+ )
%K+%β+ ~ 100, %α ~ 5E-3
169Re
169m1Re
12.9 s
%α ~ 0.2
170Re
9.2 s
(5+ )
%K+%β+=100
171Re
15.2 s
(9/2-)
%K+%β+=100
172Re
15 s
(5)
%K+%β+=100
172m1Re
55 s
(2)
%K+%β+=100
173Re
1.98 m
(5/2-)
%K+%β+=100
174Re
2.40 m
%K+%β+=100
175Re
5.89 m
(5/2-)
%K+%β+=100
176Re
5.3 m
3(+)
%K+%β+=100
177Re
14 m
(5/2-)
%K+%β+=100
178Re
13.2 m
(3+ )
%K+%β+=100
179Re
19.5 m
(5/2) +
%K+%β+=100
180Re
2.44 m
(1) -
%K+%β+=100
181Re
19.9 h
5/2+
%K+%β+=100
182Re
64.0 h
7+
%K+%β+=100
182m1Re
12.7 h
2+
%K+%β+=100
183Re
70.0 d
5/2+
%K=100
183m1Re
1.04 ms
(25/2) +
%IT=100
184Re
38.0 d
3(-)
%K+%β+=100
184m1Re
169 d
8(+)
%IT=75.4 , %K=24.6
185Re
stable
5/2+
%Abundance=37.40
186Re
3.7183 d
1-
%K=7.47 , %β-=92.53
186m1Re
2.0e+5 a
(8+ )
%IT=100
187Re
4.35e10 a
5/2+
%Abundance=62.60, %β-=100, %α < 0.0001
188Re
17.005 h
1-
%β-=100
188m1Re
18.6 m
(6) -
%IT=100
189Re
24.3 h
5/2+
%β-=100
190Re
3.1 m
(2) -
%β-=100
190m1Re
3.2 h
(6-)
%β-=54.4 , %IT=45.6
191Re
9.8 m
(3/2+ , 1/2+ )
%β-=100
192Re
16 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
162Os
1.9 ms
0+
%α=100
163Os
%α=?, %K+%β+=?
164Os
21 ms
0+
%α ~ 98 , %K+%β+ ~ 2
165Os
71 ms
(7/2-)
%α > 60 , %K+%β+ < 40
166Os
181 ms
0+
%α=72 , %K+%β+=28
167Os
0.83 s
%α=67 , %K+%β+=33
168Os
2.1 s
0+
%K+%β+=56 , %α=44
169Os
3.4 s
%K+%β+=89 , %α=11
170Os
7.3 s
0+
%K+%β+=88 , %α=12
171Os
8.0 s
(5/2-)
%K+%β+=98.3 , %α=1.7
172Os
19.2 s
0+
%K+%β+=99.0 , %α=1.0
173Os
16 s
(5/2-)
%K+%β+=99.979 , %α=0.021
174Os
44 s
0+
%K+%β+=99.980 +4-10, %α=0.020 +10-4
175Os
1.4 m
(5/2-)
%K+%β+=100
176Os
3.6 m
0+
%K+%β+=100
177Os
2.8 m
(1/2-)
%K+%β+=100
178Os
5.0 m
0+
%K+%β+=100
179Os
6.5 m
(1/2-)
%K+%β+=100
180Os
21.5 m
0+
%K+%β+=100
181Os
105 m
1/2-
%K+%β+=100
181m1Os
2.7 m
(7/2) -
%K+%β+=100
182Os
22.10 h
0+
%K=100
183Os
13.0 h
9/2+
%K+%β+=100
183m1Os
9.9 h
1/2-
%K+%β+=85 , %IT=15
184Os
5.6e13 a
0+
%Abundance=0.02
185Os
93.6 d
1/2-
%K=100
186Os
2.0e15 a
0+
%Abundance=1.58, %α=100
187Os
stable
1/2-
%Abundance=1.6
188Os
stable
0+
%Abundance=13.3
189Os
stable
3/2-
%Abundance=16.1
189m1Os
5.8 h
9/2-
%IT=100
190Os
stable
0+
%Abundance=26.4
190m1Os
9.9 m
(10) -
%IT=100
191Os
15.4 d
9/2-
%β-=100
191m1Os
13.10 h
3/2-
%IT=100
192Os
stable
0+
%Abundance=41.0
192m1Os
5.9 s
(10- )
%IT > 87, %β- < 13
193Os
30.11 h
3/2-
%β-=100
194Os
6.0 a
0+
%β-=100
195Os
6.5 m
%β-=100
196Os
34.9 m
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
165Ir
300 μs
(11/2-)
%p=87 , %α=13
166Ir
10.5 ms
(2-)
%α=93 , %p=7
166m1Ir
15.1 ms
(9+ )
%α=98.2 , %p=1.8
167Ir
5 ms
%α=?
168Ir
161 ms
%α=?
169Ir
0.4 s
%α ~ 100, %K+%β+=?, %p=?
170Ir
1.05 s
%K+%β+=25 sys%α=75 sys
171Ir
1.5 s
%α ~ 100, %K+%β+=?, %p=?
172Ir
4.4 s
(3+ )
%α ~ 2, %K+%β+=98
172m1Ir
2.0 s
(7+ )
%α=23 , %K+%β+=77
173Ir
9.0 s
(3/2+ , 5/2+ )
%K+%β+ > 93, %α < 7
173m1Ir
2.20 s
(11/2-)
%K+%β+=88 , %α=12
174Ir
9 s
(3+ )
%K+%β+=99.53 , %α=0.47
174m1Ir
4.9 s
(7+ )
%K+%β+=97.5 , %α=2.5
175Ir
9 s
(5/2-)
%K+%β+=99.15 , %α=0.85
176Ir
8 s
%K+%β+=97.9 , %α=2.1
177Ir
30 s
(5/2-)
%K+%β+=99.94 , %α=0.06
178Ir
12 s
%K+%β+=100
179Ir
79 s
(5/2) -
%K+%β+=100
180Ir
1.5 m
%K+%β+=100
181Ir
4.90 m
(5/2) -
%K+%β+=100
182Ir
15 m
(5+ )
%K+%β+=100
183Ir
58 m
5/2-
%K+%β+=100
184Ir
3.09 h
5-
%K+%β+=100
185Ir
14.4 h
5/2-
%K+%β+=100
186Ir
16.64 h
5+
%K+%β+=100
186m1Ir
1.90 h
2-
%K+%β+ ~ 75, %IT ~ 25
187Ir
10.5 h
3/2+
%K+%β+=100
187m1Ir
30.3 ms
9/2-
%IT=100
188Ir
41.5 h
1-
%K+%β+=100
188m1Ir
4.2 ms
189Ir
13.2 d
3/2+
%K=100
189m1Ir
13.3 ms
11/2-
%IT=100
189m2Ir
3.7 ms
(25/2) +
%IT=100
190Ir
11.78 d
(4-)
%K+%β+=100, %β- < 0.002
190m1Ir
1.2 h
(1-)
%IT=100
190m2Ir
3.25 h
(11) -
%K+%β+=94.4 , %IT=5.6
191Ir
stable
3/2+
%Abundance=37.3
191m1Ir
4.94 s
11/2-
%IT=100
191m2Ir
5.5 s
%IT=100
192Ir
73.831 d
4(+)
%β-=95.24 , %K=4.76
192m1Ir
1.45 m
1(-)
%IT=99.982, %β-=0.018
192m2Ir
241 a
(9)
%IT=100
193Ir
stable
3/2+
%Abundance=62.7
193m1Ir
10.53 d
11/2-
%IT=100
194Ir
19.28 h
1-
%β-=100
194m1Ir
31.85 ms
(4+ )
%IT=100
194m2Ir
171 d
(10,11)
%β-=100
195Ir
2.5 h
3/2+
%β-=100
195m1Ir
3.8 h
11/2-
%β-=95 , %IT=5
196Ir
52 s
(0- )
%β-=100
196m1Ir
1.40 h
(10,11-)
%β- ~ 100 , %IT < 0.3
197Ir
5.8 m
3/2+
%β-=100
197m1Ir
8.9 m
11/2-
%β-=99.75 , %IT=0.25
198Ir
8 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
168Pt
2.0 ms
0+
%α=100
169Pt
5 ms
%α=?
170Pt
6 ms
0+
%α=100
171Pt
25 ms
%α ~ 99, %K+%β+ ~ 1
172Pt
0.096 s
0+
%α=94 +6-32 , %K+%β+=6 +32-6
173Pt
342 ms
%K+%β+=16 , %α=84
174Pt
0.90 s
0+
%α=75 , %K+%β+=25
175Pt
2.52 s
%α=64 , %K+%β+=36
176Pt
6.33 s
0+
%K+%β+=62 , %α=38
177Pt
11 s
(5/2-)
%K+%β+=94.4 , %α=5.6
178Pt
21.1 s
0+
%K+%β+=95.4 , %α=4.6
179Pt
21.2 s
1/2-
%K+%β+=99.76 , %α=0.24
180Pt
52 s
0+
%K+%β+=100, %α ~ 0.3
181Pt
51 s
1/2-
%K+%β+=100, %α ~ 0.06
182Pt
3.0 m
0+
%K+%β+=99.969 , %α=0.031
183Pt
6.5 m
1/2-
%K+%β+ ~ 100, %α ~ 0.0013
183m1Pt
43 s
(7/2) -
%K+%β+=100, %α=?
184Pt
17.3 m
0+
%K+%β+=100, %α ~ 0.001
184m1Pt
1.01 ms
8-
%IT=100
184m2Pt
1.1 ms
8-
185Pt
70.9 m
9/2+
%K+%β+=100, %α=0.0050
185m1Pt
33.0 m
1/2-
%K+%β+=99 , %IT < 2
186Pt
2.2 h
0+
%K+%β+=100, %α ~ 0.00010
187Pt
2.35 h
3/2-
%K+%β+=100
188Pt
10.2 d
0+
%K=100, %α=2.9E-5
189Pt
10.87 h
3/2-
%K+%β+=100
190Pt
6.5e11 a
0+
%Abundance=0.01, %α=100
191Pt
2.802 d
3/2-
%K=100
192Pt
stable
0+
%Abundance=0.79
193Pt
50 a
1/2-
%K=100
193m1Pt
4.33 d
13/2+
%IT=100
194Pt
stable
0+
%Abundance=32.9
195Pt
stable
1/2-
%Abundance=33.8
195m1Pt
4.02 d
13/2+
%IT=100
196Pt
stable
0+
%Abundance=25.3
197Pt
19.8915 h
1/2-
%β-=100
197m1Pt
95.41 m
13/2+
%IT=96.7 , %β-=3.3
198Pt
stable
0+
%Abundance=7.2
199Pt
30.80 m
5/2-
%β-=100
199m1Pt
13.6 s
(13/2) +
%IT=100
200Pt
12.5 h
0+
%β-=100
201Pt
2.5 m
(5/2-)
%β-=100
202Pt
44 h
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
172Au
6.3 ms
%α ~ 100, %p < 2
173Au
59 ms
%α < 100
174Au
120 ms
%α=?
175Au
200 ms
%α=94 +6-25, %K+%β+=6 +25-6
176Au
1.08 s
%α=?, %K+%β+=?
177Au
1.18 s
%α < 40
178Au
2.6 s
%K+%β+ < 60, %α > 40
179Au
7.1 s
%K+%β+=78.0 , %α=22.0
180Au
8.1 s
%K+%β+ < 98.2, %α > 1.8
181Au
11.4 s
5/2-
%K+%β+=98.7 , %α=1.3
182Au
15.6 s
%K+%β+=99.87 , %α=0.13
183Au
42.0 s
(5/2) -
%K+%β+=99.70 , %α=0.30
184Au
53.0 s
3+
%K+%β+=99.978, %α=0.022
185Au
4.25 m
5/2-
%K+%β+=99.74 , %α=0.26
185m1Au
6.8 m
%K+%β+ < 100, %IT=?
186Au
10.7 m
3-
%K+%β+=100, %α=8E-4
187Au
8.4 m
1/2+
%K+%β+=100, %α=0.003 sys
187m1Au
2.3 s
9/2-
%IT=100
188Au
8.84 m
1(-)
%K+%β+=100
189Au
28.7 m
1/2+
%K+%β+=100, %α < 3E-5
189m1Au
4.59 m
11/2-
%K+%β+ ~ 100, %IT > 0
190Au
42.8 m
1-
%K+%β+=100, %α < 1E-6
190m1Au
125 ms
(11-)
%IT=?, %K+%β+=?
191Au
3.18 h
3/2+
%K+%β+=100
191m1Au
0.92 s
(11/2-)
%IT=100
192Au
4.94 h
1-
%K+%β+=100
192m1Au
29 ms
(5) +
%IT=100
192m2Au
160 ms
(11-)
%IT=100
193Au
17.65 h
3/2+
%K+%β+=100
193m1Au
3.9 s
11/2-
%IT=99.97, %K+%β+ ~ 0.03
194Au
38.02 h
1-
%K+%β+=100
194m1Au
600 ms
(5+ )
%IT=100
194m2Au
420 ms
(11-)
%IT=100
195Au
186.09 d
3/2+
%K=100
195m1Au
30.5 s
11/2-
%IT=100
196Au
6.183 d
2-
%K+%β+=92.80 , %β- =7.20
196m1Au
8.1 s
5+
%IT=100
196m2Au
9.6 h
12-
%IT=100
197Au
stable
3/2+
%Abundance=100
197m1Au
7.73 s
11/2-
%IT=100
198Au
2.69517 d
2-
%β-=100
198m1Au
2.27 d
(12-)
%IT=100
199Au
3.139 d
3/2+
%β-=100
200Au
48.4 m
1(-)
%β-=100
200m1Au
18.7 h
12-
%β-=82 , %IT=18
201Au
26 m
3/2+
%β-=100
202Au
28.8 s
(1-)
%β-=100
203Au
53 s
3/2+
%β-=100
204Au
39.8 s
(2-)
%β-=100
205Au
31 s
(3/2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
175Hg
20 ms
%α=100
176Hg
18 ms
0+
%α ~ 100
177Hg
0.130 s
%α=85, %K+%β+=15
178Hg
266 ms
0+
%K+%β+=?, %α ~ 100
179Hg
1.09 s
%K+%β+ ~ 47, %α ~ 53, %Kp ~ 0.15
180Hg
2.8 s
0+
%K+%β+=52 , %α=48
181Hg
3.6 s
1/2(-)
%K+%β+=64 , %α=36 , %Kp=0.014 , %Kα=9E-6
182Hg
10.83 s
0+
%K+%β+=84.8 , %α=15.2
183Hg
9.4 s
1/2-
%K+%β+=88.3 , %α=11.7 , %Kp=0.00056
184Hg
30.9 s
0+
%K+%β+=98.74 , %α=1.26
185Hg
49.1 s
1/2-
%K+%β+=94 , %α=6
185m1Hg
21.6 s
13/2+
%IT=54 , %K+%β+=46 , %α ~ 0.03
186Hg
1.38 m
0+
%K+%β+=99.982 , %α=0.018
187Hg
2.4 m
13/2+
%K+%β+=100, %α>1.2E-4
187m1Hg
1.9 m
3/2-
%K+%β+=100, %α>2.5E-4
188Hg
3.25 m
0+
%K+%β+=100, %α=4.0E-5
189Hg
7.6 m
3/2-
%K+%β+=100, %α < 3E-5
189m1Hg
8.6 m
13/2+
%K+%β+=100, %α < 3E-5
190Hg
20.0 m
0+
%K+%β+=100, %α < 5E-5
191Hg
49 m
(3/2-)
%K+%β+=100
191m1Hg
50.8 m
13/2+
%K+%β+=100
192Hg
4.85 h
0+
%K=100, %α < 4E-6
193Hg
3.80 h
3/2-
%K+%β+=100
193m1Hg
11.8 h
13/2+
%K+%β+=92.8 , %IT=7.2
194Hg
444 a
0+
%K=100
195Hg
9.9 h
1/2-
%K+%β+=100
195m1Hg
41.6 h
13/2+
%IT=54.2 , %K+%β+=45.8
196Hg
stable
0+
%Abundance=0.15
197Hg
64.14 h
1/2-
%K=100
197m1Hg
23.8 h
13/2+
%K=8.6 , %IT=91.4
198Hg
stable
0+
%Abundance=9.97
199Hg
stable
1/2-
%Abundance=16.87
199m1Hg
42.6 m
13/2+
%IT=100
200Hg
stable
0+
%Abundance=23.10
201Hg
stable
3/2-
%Abundance=13.18
202Hg
stable
0+
%Abundance=29.86
203Hg
46.612 d
5/2-
%β-=100
204Hg
stable
0+
%Abundance=6.87
205Hg
5.2 m
1/2-
%β-=100
205m1Hg
1.10 ms
(13/2+ )
%IT=100
206Hg
8.15 m
0+
%β-=100
207Hg
2.9 m
(9/2+ )
%β-=100
208Hg
42 m
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
179Tl
0.16 s
%α ~ 100
179m1Tl
1.4 ms
(9/2-)
%α ~ 100
180Tl
0.70 s
%K+%β+=?, %KSF ~ 1.0E-4
181Tl
(1/2+ )
181m1Tl
3.4 s
(9/2-)
%α=?
182Tl
3.1 s
(7+ )
%K+%β+ > 96, %α < 4
183Tl
(1/2+ )
183m1Tl
60 ms
(9/2-)
%α < 0.010
184Tl
11 s
%K+%β+=97.9 , %α=2.1
185Tl
19.5 s
(1/2+ )
%K+%β+=?
185m1Tl
1.83 s
(9/2-)
%IT=?, %α=?
186Tl
27.5 s
(7+ )
%K+%β+=100, %α ~ 0.006
186m1Tl
2.9 s
(10- )
%IT=100
187Tl
51 s
(1/2+ )
%K+%β+=?, %α=?
187m1Tl
15.60 s
(9/2-)
%α=?, %K+%β+=?, %IT=?
188Tl
71 s
(2-)
%K+%β+=100
188m1Tl
71 s
(7+ )
%K+%β+=100
188m2Tl
41 ms
(9-)
%IT=100
189Tl
2.3 m
(1/2+ )
%K+%β+=100
189m1Tl
1.4 m
(9/2-)
%K+%β+=100, %IT<4
190Tl
2.6 m
(2) -
%K+%β+=100
190m1Tl
3.7 m
(7+ )
%K+%β+=100
191Tl
(1/2+ )
191m1Tl
5.22 m
9/2(-)
%K+%β+=100
192Tl
9.6 m
(2-)
%K+%β+=100
192m1Tl
10.8 m
(7+ )
%K+%β+=100
193Tl
21.6 m
1/2+
%K+%β+=100
193m1Tl
2.11 m
9/2-
%IT=75, %K+%β+=25
194Tl
33.0 m
2-
%K+%β+=100 , %α < 1E-7
194m1Tl
32.8 m
(7+ )
%K+%β+=100
195Tl
1.16 h
1/2+
%K+%β+=100
195m1Tl
3.6 s
9/2-
%IT=100
196Tl
1.84 h
2-
%K+%β+=100
196m1Tl
1.41 h
(7+ )
%K+%β+=95.5 , %IT=4.5
197Tl
2.84 h
1/2+
%K+%β+=100
197m1Tl
0.54 s
9/2-
%IT=100
198Tl
5.3 h
2-
%K+%β+=100
198m1Tl
1.87 h
7+
%IT=46 , %K+%β+=54
198m2Tl
32.1 ms
(10- )
%IT=100
199Tl
7.42 h
1/2+
%K+%β+=100
199m1Tl
28.4 ms
9/2-
%IT=100
200Tl
26.1 h
2-
%K+%β+=100
200m1Tl
34.3 ms
7+
%IT=100
201Tl
72.912 h
1/2+
%K=100
201m1Tl
2.035 ms
(9/2-)
%IT=100
202Tl
12.23 d
2-
%K+%β+=100
202m1Tl
572 μs
7+
203Tl
stable
1/2+
%Abundance=29.524
204Tl
3.78 a
2-
%β-=97.10 , %K+%β+=2.90
205Tl
stable
1/2+
%Abundance=70.476
206Tl
4.199 m
0-
%β-=100
206m1Tl
3.74 m
(12-)
%IT=100
207Tl
4.77 m
1/2+
%β-=100
207m1Tl
1.33 s
11/2-
%IT=100, %β- < 0.1
208Tl
3.053 m
5(+)
%β-=100
209Tl
2.20 m
(1/2+ )
%β-=100
210Tl
1.30 m
(5+ )
%β-=100, %β-n=0.007 +7- 4
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
181Pb
45 ms
(13/2+ )
%α ~ 98
182Pb
55 ms
0+
%α=?
183Pb
300 ms
(1/2-)
%α ~ 94, %K+%β+ ~ 6
184Pb
0.55 s
0+
%α=?
185Pb
4.1 s
%α < 100
186Pb
4.83 s
0+
%α=54 , %K+%β+=46
187Pb
18.3 s
(13/2+ )
%K+%β+=98.0, %α=2.0
187m1Pb
15.2 s
%α=?, %K+%β+=?
188Pb
24 s
0+
%K+%β+=91.5 , %α=8.5
189Pb
51 s
%K+%β+ > 99, %α ~ 0.4
190Pb
1.2 m
0+
%K+%β+=99.79 , %α=0.21
191Pb
1.33 m
(3/2-)
%K+%β+=99.987 , %α=0.013
191m1Pb
2.18 m
(13/2+ )
%K+%β+=100, %α ~ 0.02
192Pb
3.5 m
0+
%K+%β+=99.9941 , %α=0.0059
193Pb
2 m
(3/2-)
%K+%β+=?
193m1Pb
5.8 m
(13/2+ )
%K+%β+=100
194Pb
12.0 m
0+
%K+%β+=100, %α=7.3E-6
195Pb
15 m
3/2-
%K+%β+=100
195m1Pb
15.0 m
13/2+
%K+%β+=100
196Pb
37 m
0+
%K+%β+=100, %α < 3E-5
197Pb
8 m
3/2-
%K+%β+=100
197m1Pb
43 m
13/2+
%K+%β+=81 , %IT=19
198Pb
2.40 h
0+
%K+%β+=100
199Pb
90 m
3/2-
%K+%β+=100
199m1Pb
12.2 m
13/2+
%IT=93, %K+%β+=7
200Pb
21.5 h
0+
%K=100
201Pb
9.33 h
5/2-
%K+%β+=100
201m1Pb
61 s
13/2+
%IT>99, %K+%β+<1
202Pb
5.25e4 a
0+
%K=100, %α<1
202m1Pb
3.53 h
9-
%IT=90.5 , %K+%β+=9.5
203Pb
51.873 h
5/2-
%K=100
203m1Pb
6.3 s
13/2+
%IT=100
203m2Pb
0.48 s
29/2-
%IT=100
204Pb
1.4e17 a
0+
%Abundance=1.4
204m1Pb
67.2 m
9-
%IT=100
205Pb
1.53e+7 a
5/2-
%K=100
205m1Pb
5.54 ms
13/2+
%IT=100
206Pb
stable
0+
%Abundance=24.1
207Pb
stable
1/2-
%Abundance=22.1
207m1Pb
0.805 s
13/2+
%IT=100
208Pb
stable
0+
%Abundance=52.4
209Pb
3.253 h
9/2+
%β-=100
210Pb
22.3 a
0+
%β-=100, %α=1.9E-6
211Pb
36.1 m
9/2+
%β- =100
212Pb
10.64 h
0+
%β-=100
213Pb
10.2 m
(9/2+ )
%β-=100
214Pb
26.8 m
0+
%β-=100
215Pb
36 s
(5/2+ )
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
185Bi
44 μs
(1/2+ )
%p ~ 100
186Bi
15.0 ms
(3+ )
%α ~ 100
186m1Bi
9.8 ms
(10- )
%α ~ 100
187Bi
35 ms
(9/2-)
%α>50
187m1Bi
0.8 ms
(1/2+ )
188Bi
0.21 s
%α=?, %K+%β+=?
188m1Bi
44 ms
%α=?, %K+%β+=?
189Bi
680 ms
(9/2-)
%α > 50, %K+%β+ < 50
189m1Bi
5 ms
(1/2+ )
%α > 50, %K+%β+ < 50
190Bi
6.3 s
(3+ )
%α=80 , %K+%β+=20
190m1Bi
6.2 s
(10- )
%α=70 , %K+%β+=30
191Bi
12 s
(9/2-)
%α=60 , %K+%β+=40
191m1Bi
150 ms
(1/2+ )
%α > 50, %K+%β+ < 50
192Bi
37 s
(2+ , 3+ )
%K+%β+=82 , %α=18
192m1Bi
39.6 s
(10- )
%K+%β+=90.8 , %α=9.2
193Bi
67 s
(9/2-)
%K+%β+=96.5 , %α=3.5
193m1Bi
3.2 s
(1/2+ )
%α=90 +10-20, %K+%β+=10 +20-10
194Bi
95 s
(3+ )
%K+%β+=99.54 , %α=0.46
194m1Bi
115 s
(10- )
%K+%β+=99.80 , %α=0.20
194m2Bi
125 s
(6+ , 7+ )
%K+%β+=100
195Bi
183 s
(9/2-)
%K+%β+=99.967 , %α=0.033
195m1Bi
87 s
(1/2+ )
%K+%β+=67 , %α=33
196Bi
308 s
(3+ )
%K+%β+=100, %α=0.00115
196m1Bi
0.6 s
(7+ )
%IT=100
196m2Bi
240 s
(10- )
%K+%β+=74.2 , %IT=25.8 , %α=0.00038
197Bi
9.33 m
(9/2-)
%K+%β+=100, %α=1E-4 sys
197m1Bi
5.04 m
(1/2+ )
%K+%β+=45 , %α=55 , %IT < 0.3
198Bi
10.3 m
(2+ , 3+ )
%K+%β+=100
198m1Bi
11.6 m
(7+ )
%K+%β+=100
198m2Bi
7.7 s
(10- )
%IT=100
199Bi
27 m
9/2-
%K+%β+=100
199m1Bi
24.70 m
(1/2+ )
%K+%β+=99 , %α ~ 0.01, %IT < 2
200Bi
36.4 m
7+
%K+%β+=100
200m1Bi
31 m
(2+ )
%K+%β+ > 90, %IT < 10
200m2Bi
0.40 s
(10- )
%IT=100
201Bi
108 m
9/2-
%K+%β+=100, %α < 1E-4
201m1Bi
59.1 m
1/2+
%K > 93, %IT < 6.8, %α ~ 0.3
202Bi
1.72 h
5+
%K+%β+=100, %α<1E-5
203Bi
11.76 h
9/2-
%K+%β+=100, %α ~ 1E-5
203m1Bi
303 ms
1/2+
%IT=100
204Bi
11.22 h
6+
%K+%β+=100
204m1Bi
13.0 ms
10-
%IT=100
204m2Bi
1.07 ms
(17+ )
%IT=100
205Bi
15.31 d
9/2-
%K+%β+=100
206Bi
6.243 d
6(+)
%K+%β+=100
207Bi
31.55 a
9/2-
%K+%β+=100
208Bi
3.68e+5 a
(5) +
%K+%β+=100
208m1Bi
2.58 ms
(10) -
%IT=100
209
{\displaystyle {}^{209}}
Bi
1.9
⋅
{\displaystyle \cdot }
10
19
{\displaystyle {}^{19}}
yr
9/2-
%α=100 , %Abundance=100
210Bi
5.013 d
1-
%β-=100, %α=1.32E-4
210m1Bi
3.04e+6 a
9-
%α=100
211Bi
2.14 m
9/2-
%α=99.724 , %β-=0.276
212Bi
60.55 m
1(-)
%β-=64.06 , %α=35.94 , %β-α=0.023
212m1Bi
25.0 m
(9-)
%α=67 , %β-=33 , %β-α=30
212m2Bi
7.0 m
%β- ~ 100
213Bi
45.59 m
9/2-
%β-=97.91 , %α=2.09
214Bi
19.9 m
1-
%β-=99.979 , %α=0.021
215Bi
7.6 m
%β-=100
216Bi
3.6 m
(1-)
%β- ~ 100
217Bi
97 s
(9/2-)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
190Po
2.0 ms
0+
%α=100, %K+%β+=0.1 sys
191Po
15.5 ms
%α=?
192Po
0.0332 s
0+
%α=100
193Po
0.42 s
(3/2- )
%α=?
193m1Po
0.24 s
(13/2+ )
%α=?
194Po
0.392 s
0+
%α=93
195Po
4.64 s
(3/2- )
%α=75 , %K+%β+=25
195m1Po
1.92 s
(13/2+ )
%α ~ 90, %K+%β+ ~ 10, %IT < 0.01
196Po
5.8 s
0+
%α ~ 98, %K+%β+ ~ 2
197Po
53.6 s
(3/2- )
%K+%β+=56 , %α=44
197m1Po
25.8 s
(13/2+ )
%α=84 , %K+%β+=16 , %IT=0.01 sys
198Po
1.77 m
0+
%α=57 , %K+%β+=43
199Po
5.48 m
3/2-
%K+%β+=88 , %α=12
199m1Po
4.13 m
13/2+
%K+%β+=59 , %α=39 , %IT=2.1
200Po
11.5 m
0+
%α=11.1 , %K+%β+=88.9
201Po
15.3 m
3/2-
%K+%β+=98.4 , %α=1.6
201m1Po
8.9 m
13/2+
%IT=56 , %K=41 , %α ~ 2.9
202Po
44.7 m
0+
%K+%β+=98.08 , %α=1.92
202m1Po
85 ns
8+
202m2Po
200 ns
11-
202m3Po
19 ns
12+
202m4Po
11 ns
(15-)
203Po
36.7 m
5/2-
%K+%β+=99.89 , %α=0.11
203m1Po
45 s
13/2+
%IT ~ 100 , %α ~ 0.04 sys
204Po
3.53 h
0+
%K+%β+=99.34 , %α=0.66
205Po
1.66 h
5/2-
%K+%β+=99.96 , %α=0.04
205m1Po
58 ms
19/2-
%IT=100
206Po
8.8 d
0+
%K+%β+=94.55 , %α=5.45
207Po
5.80 h
5/2-
%K+%β+=99.979 , %α=0.021
207m1Po
2.8 s
19/2-
%IT=100
208Po
2.898 a
0+
%α=99.9958 , %K+%β+=0.0042
209Po
102 a
1/2-
%α=99.52 , %K+%β+=0.48
210Po
138.376 d
0+
%α=100
211Po
0.516 s
9/2+
%α=100
211m1Po
25.2 s
(25/2+ )
%α=99.984 , %IT=0.016
212Po
0.299 μs
0+
%α=100
212m1Po
45.1 s
(18+)
%α=99.93 , %IT=0.07
213Po
4.2 μs
9/2+
%α=100
214Po
164.3 μs
0+
%α=100
215Po
1.781 ms
9/2+
%α=99.99977 , %β-=2.3E-4
216Po
0.145 s
0+
%α=100
217Po
10 s
%α > 95, %β- < 5
218Po
3.10 m
0+
%α=99.980 , %β-=0.020
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
193At
40 ms
%α=?
194At
40 ms
%α=?
194m1At
250 ms
%α=?
195At
0.63 s
%α > 75, %K+%β+ < 25
196At
0.253 s
%α ~ 100
197At
0.35 s
(9/2- )
%α=96 , %K+%β+=4
197m1At
3.7 s
(1/2+ )
%α=?, %K+%β+=?
198At
4.2 s
(3+ )
%α=90 , %K+%β+=10
198m1At
1.0 s
(10- )
%α=84 , %K+%β+=16
199At
7.2 s
(9/2- )
%α=90 , %K+%β+=10
200At
43 s
(3+ )
%α=57 , %K+%β+=43
200m1At
47 s
(7+)
%α=43 , %K+%β+ < 57
200m2At
3.5 s
(10- )
%α ~ 10.5, %IT ~ 85, %K ~ 4.5
201At
89 s
(9/2- )
%α=71 , %K+%β+=29
202At
184 s
(2,3)+
%K+%β+=82 , %α=18
202m1At
182 s
(7+)
%K+%β+=91.3, %α=8.7
202m2At
0.46 s
(10- )
%IT=99.7 , %K+%β+=0.25 sys %α=0.096
203At
7.4 m
9/2-
%K+%β+=69 , %α=31
204At
9.2 m
7+
%K+%β+=96.2 , %α=3.8
204m1At
108 ms
(10- )
%IT=100
205At
26.2 m
9/2-
%K+%β+=90 , %α=10
206At
30.0 m
(5)+
%K+%β+=99.11 , %α=0.89
207At
1.80 h
9/2-
%K+%β+=91.4 , %α=8.6
208At
1.63 h
6+
%K+%β+=99.45 , %α=0.55
209At
5.41 h
9/2-
%K+%β+=95.9 , %α=4.1
210At
8.1 h
(5)+
%K+%β+=99.825 , %α=0.175
211At
7.214 h
9/2-
%α=41.80 , %K=58.20
212At
0.314 s
(1- )
%α=100, %β- < 2E-6, %K+%β+ < 3E-2
212m1At
0.119 s
(9-)
%α > 99, %IT < 1
213At
125 ns
9/2-
%α=100
214At
558 ns
1-
%α=100
214m1At
265 ns
214m2At
760 ns
9-
215At
0.10 ms
9/2-
%α=100
216At
0.30 ms
1-
%α=100, %K<3E-7, %β-<6E-3
216m1At
0.1 ms
(9-)
217At
32.3 ms
9/2-
%α=99.988 , %β-=0.012
218At
1.5 s
%α=99.9 , %β-=0.1
219At
56 s
%α ~ 97, %β- ~ 3
220At
3.71 m
3
%α=8 , %β-=92
221At
2.3 m
%β-=100
222At
54 s
%β-=100
223At
50 s
%β-=100, %α=0.008 sys
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
196Rn
3 ms
0+
%α ~ 100
197Rn
65 ms
(3/2- )
%α ~ 100
197m1Rn
19 ms
(13/2+ )
%α ~ 100
198Rn
64 ms
0+
%α=100
199Rn
0.62 s
(3/2- )
%α=94 sys, %K+%β+=6 sys
199m1Rn
0.32 s
(13/2+ )
%α=97 sys, %K+%β+=3 sys
200Rn
0.96 s
0+
%α=86 +14-4, %K+%β+<18
201Rn
7.0 s
(3/2- )
%α ~ 80 , %K+%β+ ~ 20
201m1Rn
3.8 s
(13/2+ )
%α ~ 90, %K+%β+ ~ 10, %IT ~ 0
202Rn
10.0 s
0+
%α=86 , %K+%β+=14
203Rn
45 s
(3/2,5/2)-
%α=66 , %K+%β+=34
203m1Rn
28 s
(13/2+ )
%α ~ 80 sys%K+%β+ ~ 20 sys
204Rn
1.24 m
0+
%α=73 , %K+%β+=27
205Rn
2.8 m
5/2-
%K+%β+=77 , %α=23
206Rn
5.67 m
0+
%α=63 , %K+%β+=37
207Rn
9.25 m
5/2-
%K+%β+=79 , %α=21
208Rn
24.35 m
0+
%α=62 , %K+%β+=38
209Rn
28.5 m
5/2-
%K+%β+=83 , %α=17
210Rn
2.4 h
0+
%α=96 , %K+%β+=4
211Rn
14.6 h
1/2-
%K=72.6 , %α=27.4
212Rn
23.9 m
0+
%α=100
213Rn
25.0 ms
(9/2+ )
%α=100
214Rn
0.27 μs
0+
%α=100
214m1Rn
0.69 ns
6+
214m2Rn
6.5 ns
8+
215Rn
2.30 μs
9/2+
%α=100
216Rn
45 μs
0+
%α=100
217Rn
0.54 ms
9/2+
%α=100
218Rn
35 ms
0+
%α=100
219Rn
3.96 s
5/2+
%α=100
220Rn
55.6 s
0+
%α=100
221Rn
25 m
7/2(+)
%β-=78 , %α=22
222Rn
3.8235 d
0+
%α=100
223Rn
23.2 m
7/2
%β-=100, %α=0.0004 sys
224Rn
107 m
0+
%β-=100
225Rn
4.5 m
7/2-
%β-=100
226Rn
7.4 m
0+
%β-=100
227Rn
22.5 s
%β-=100
228Rn
65 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
200Fr
19 ms
(3+ )
%α=100
200m1Fr
0.57 s
(10- )
%α=100
201Fr
48 ms
(9/2- )
%α=100 , %K+%β+ < 1
202Fr
0.34 s
(3+ )
%α ~ 97 , %K+%β+ ~ 3
202m1Fr
0.34 s
(10- )
%α ~ 97 , %K+%β+ ~ 3
203Fr
0.55 s
(9/2- )
%α ~ 95 , %K+%β+ ~ 5
204Fr
1.7 s
(3+ )
%α ~ 80, %K+%β+ ~ 20
204m1Fr
2.6 s
(7+)
%α=?
204m2Fr
1 s
(10- )
%α=?
205Fr
3.85 s
(9/2- )
%α > 99, %K+%β+ < 1
206Fr
15.9 s
(5+)
%α=84 , %K+%β+=16
206m1Fr
0.7 s
(10- )
%α=0.3 , %IT=?
207Fr
14.8 s
9/2-
%α=95 , %K+%β+=5
208Fr
59.1 s
7+
%α=90 , %K+%β+=10
209Fr
50.0 s
9/2-
%α=89 , %K+%β+=11
210Fr
3.18 m
6+
%α=60 , %K+%β+=40
211Fr
3.10 m
9/2-
%α>80, %K<20
212Fr
20.0 m
5+
%K+%β+=57 , %α=43
213Fr
34.6 s
9/2-
%α=99.45 , %K+%β+=0.55
214Fr
5.0 ms
(1- )
%α=100
214m1Fr
3.35 ms
(8-)
%α=100
215Fr
86 ns
9/2-
%α=100
215m1Fr
3.5 ns
(23/2)-
216Fr
0.70 μs
(1- )
%α=100, %K<2E-7 sys
217Fr
22 μs
9/2-
%α=100
218Fr
1.0 ms
1-
%α=100
218m1Fr
22.0 ms
%α < 100 , %IT=?
219Fr
20 ms
9/2-
%α=100
220Fr
27.4 s
1+
%α=99.65 , %β-=0.35
221Fr
4.9 m
5/2-
%α=100, %γ=8.8E-11
222Fr
14.2 m
2-
%β-=100
223Fr
21.8 m
3/2(-)
%β-=99.994, %α=0.006
224Fr
3.33 m
1-
%β-=100
225Fr
4.0 m
3/2-
%β-=100
226Fr
49 s
1-
%β-=100
227Fr
2.47 m
1/2+
%β-=100
228Fr
38 s
2-
%β-=100
229Fr
50 s
%β-=100
230Fr
19.1 s
%β-=100
231Fr
17.5 s
%β-=100
232Fr
5 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
202Ra
0.7 ms
0+
%α=100
203Ra
1.0 ms
(3/2- )
%α ~ 100
203m1Ra
33 ms
(13/2+ )
%α ~ 100
204Ra
59 ms
0+
%α ~ 100
205Ra
210 ms
(3/2- )
%α=?
205m1Ra
170 ms
(13/2+ )
%α=?
206Ra
0.24 s
0+
%α ~ 100
207Ra
1.3 s
(5/2,3/2)-
%α ~ 90, %K+%β+ ~ 10
207m1Ra
55 ms
(13/2+ )
%IT=85 sys%α=15 sys %K+%β+ ~ 0.55
208Ra
1.3 s
0+
%α=95 sys %K+%β+=5 sys
209Ra
4.6 s
5/2-
%α ~ 90, %K+%β+ ~ 10
210Ra
3.7 s
0+
%α ~ 96, %K+%β+ ~ 4
211Ra
13 s
5/2(-)
%α > 93, %K < 7
212Ra
13.0 s
0+
%α ~ 85, %K+%β+ ~ 15
213Ra
2.74 m
1/2-
%α=80 , %K+%β+=20
213m1Ra
2.1 ms
%IT ~ 99, %α ~ 1
214Ra
2.46 s
0+
%α=99.941 , %K=0.059
215Ra
1.59 ms
(9/2+ )
%α=100
216Ra
182 ns
0+
%α=100, %K<1E-8
217Ra
1.6 μs
(9/2+ )
%α=100
218Ra
25.6 μs
0+
%α=100
219Ra
10 ms
(7/2)+
%α=100
220Ra
18 ms
0+
%α=100
221Ra
28 s
5/2+
%α=100, %γ=1.2E-10
222Ra
38.0 s
0+
%α=100, %14C=3.0E-8
223Ra
11.435 d
3/2+
%α=100, %14C=6.4E-8
224Ra
3.66 d
0+
%α=100, %14C=4.3E-9
225Ra
14.9 d
1/2+
%β-=100
226Ra
1600 a
0+
%α=100, %14C=3.2E-9
227Ra
42.2 m
3/2+
%β-=100
228Ra
5.75 a
0+
%β-=100
229Ra
4.0 m
5/2(+)
%β-=100
230Ra
93 m
0+
%β-=100
231Ra
103 s
(7/2-,1/2+ )
%β-=100
232Ra
250 s
0+
%β-=100
233Ra
30 s
%β-=100
234Ra
30 s
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
206Ac
22 ms
(3+ )
%α=?
206m1Ac
33 ms
(10- )
207Ac
22 ms
(9/2- )
%α ~ 100
208Ac
95 ms
(3+ )
%α=?
208m1Ac
25 ms
(10- )
%α=?
209Ac
0.10 s
(9/2- )
%α ~ 99, %K+%β+ ~ 1
210Ac
0.35 s
%α ~ 96, %K+%β+ ~ 4
211Ac
0.25 s
%α ~ 100
212Ac
0.93 s
%α ~ 97, %K+%β+ ~ 3
213Ac
0.80 s
%α < 100
214Ac
8.2 s
%α > 89 , %K < 11
215Ac
0.17 s
9/2-
%α=99.91 , %K+%β+=0.09
216Ac
0.33 ms
(1- )
%α=100
216m1Ac
0.33 ms
(9-)
217Ac
69 ns
9/2-
%α=100, %K+%β+ < 2
217m1Ac
740 ns
(29/2)+
218Ac
1.08 μs
(1- )
%α=100
219Ac
11.8 μs
9/2-
%α=100, %K+%β+ ~ 1E-6
220Ac
26.4 ms
(3-)
%α=100
221Ac
52 ms
(3/2- )
%α=100
222Ac
5.0 s
1-
%α=99 , %K+%β+=1
222m1Ac
63 s
%α > 88, %IT < 10 , %K+%β+ < 2
223Ac
2.10 m
(5/2- )
%α=99, %K=1
224Ac
2.78 h
0-
%K=90.9 +14-20, %α=9.1 +20-14, %β- < 1.6 sys
225Ac
10.0 d
(3/2- )
%α=100, %14C=6.0E-10
226Ac
29.37 h
(1)
%α=6E-3 , %β-=83 , %K=17
227Ac
21.773 a
3/2-
%β-=98.620 , %α=1.380
228Ac
6.15 h
3+
%β-=100
229Ac
62.7 m
(3/2+ )
%β-=100
230Ac
122 s
(1+ )
%β-=100
231Ac
7.5 m
(1/2+ )
%β-=100
232Ac
119 s
(1+ )
%β-=100
233Ac
145 s
(1/2+ )
%β-=100
234Ac
44 s
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
210Th
9 ms
0+
%α ~ 100
211Th
37 ms
%α=?, %K=?
212Th
30 ms
0+
%α=100, %K+%β+ ~ 0.3
213Th
140 ms
%α < 100
214Th
100 ms
0+
%α=100
215Th
1.2 s
(1/2- )
%α=100
216Th
0.028 s
0+
%α=100, %K+%β+ ~ 0.01 sys
216m1Th
180 μs
(8+,11- )
217Th
0.252 ms
(9/2+ )
%α=100
218Th
109 ns
0+
%α=100
219Th
1.05 μs
%α=100, %K+%β+ ~ 1E-7
220Th
9.7 μs
0+
%α=100, %K=2E-7 sys
221Th
1.68 ms
(7/2+ )
%α=100
222Th
2.8 ms
0+
%α=100
223Th
0.60 s
(5/2)+
%α=100
224Th
1.05 s
0+
%α=100
225Th
8.72 m
(3/2)+
%α ~ 90, %K ~ 10
226Th
30.57 m
0+
%α=100
227Th
18.72 d
(1/2+ )
%α=100
228Th
1.9116 a
0+
%α=100, %20O=1.13E-11
229Th
7340 a
5/2+
%α=100
230Th
7.538e+4 a
0+
%α=100, %24NE=5.6E-11 , %SF < 3.8E-12
231Th
25.52 h
5/2+
%β-=100, %α ~ 1E-8
232Th
1.405e10 a
0+
%Abundance=100, %α=100 , %SF<1.8E-9
233Th
22.3 m
1/2+
%β-=100
234Th
24.10 d
0+
%β-=100
235Th
7.1 m
(1/2+ )
%β-=100
236Th
37.5 m
0+
%β-=100
237Th
5.0 m
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
<212Pa
5.1 ms
(3+ )
%α=?
213Pa
5.3 ms
%α=?
214Pa
17 ms
%α=?
215Pa
14 ms
%α=100
216Pa
0.20 s
%K ~ 2 sys %α ~ 98 sys
217Pa
4.9 ms
%α =100
217m1Pa
1.6 ms
%α < 100
218Pa
0.12 ms
%α=100
219Pa
53 ns
9/2-
%α=100, %K+%β+ ~ 5E-9
220Pa
0.78 μs
%α=100, %K+%β+=3E-7 sys
221Pa
5.9 μs
9/2-
%α=100
222Pa
2.9 ms
%α=100
223Pa
6.5 ms
%α=100, %K+%β+ < 1.0E-3
224Pa
0.79 s
%α=100
225Pa
1.7 s
%α=100
226Pa
1.8 m
%α=74 , %K+%β+=26
227Pa
38.3 m
(5/2- )
%α=85 , %K=15
228Pa
22 h
3+
%K+%β+=98.0 , %α=2.0
229Pa
1.50 d
(5/2+ )
%K=99.52 , %α=0.48
230Pa
17.4 d
(2- )
%K+%β+=91.6 , %β-=8.4 , %α=0.0032
231Pa
32760 a
3/2-
%α=100, %SF < 1.6E-11
232Pa
1.31 d
(2- )
%β-=99.997 , %K=0.003
233Pa
26.967 d
3/2-
%β-=100
234Pa
6.70 h
4+
%β-=100, %SF < 3E-10
234m1Pa
1.17 m
(0- )
%β-=99.84 , %IT=0.16 , %SF < 1E-9
235Pa
24.5 m
(3/2- )
%β-=100
236Pa
9.1 m
1(-)
%β-=100
237Pa
8.7 m
(1/2+ )
%β-=100
238Pa
2.3 m
(3-)
%β-=100, %SF < 2.6E-6
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
218U
1.5 ms
0+
%α=100
219U
42 μs
%α=?
220U
221U
222U
1.0 μs
0+
%α=100
223U
18 μs
%α=?
224U
0.9 ms
0+
%α=100
225U
95 ms
%α=100
226U
0.35 s
0+
%α=100
227U
1.1 m
(3/2+ )
%α=100, %K+%β+ < 0.001
228U
9.1 m
0+
%K<5, %α>95
229U
58 m
(3/2+ )
%K+%β+ ~ 80, %α ~ 20
230U
20.8 d
0+
%α=100, %SF < 1.4E-10
231U
4.2 d
(5/2- )
%K=100, %α ~ 0.0055
232U
68.9 a
0+
%α=100, %24NE=9E-11
233U
1.592e+5 a
5/2+
%α=100, %SF < 6E-11, %24NE < 9.5E-11
234U
2.455e+5 a
0+
%Abundance=0.0055, %α=100, %SF=1.64E-9 , %nE=9E-12 , %MG=1.4E-11
235U
7.038e+8 a
7/2-
%Abundance=0.7200, %α=100, %SF=7.0E-9 , %20NE=8E-10
235m1U
25 m
1/2+
%IT=100
236U
2.342e7 a
0+
%α=100, %SF=9.4E-8
237U
6.75 d
1/2+
%β-=100
238U
4.468e+9 a
0+
%Abundance=99.2745, %α=100, %SF=5.45E-5 , %ββ=2.2E-10
238m1U
225 ns
0+
238m2U
1 ns
239U
23.45 m
5/2+
%β-=100
240U
14.1 h
0+
%β-=100
241U
242U
16.8 m
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
225Np
6 ms
%α=?
226Np
35 ms
%α=100
227Np
0.51 s
%α=100, %K+%β+ ~ 0.05
228Np
61.4 s
%K=60 , %α=40 , %KSF=0.020
229Np
4.0 m
%α > 50, %K < 50
230Np
4.6 m
%K+%β+ < 97, %α > 3
231Np
48.8 m
(5/2)
%K=98 , %α=2
232Np
14.7 m
(4+ )
%K+%β+=100
233Np
36.2 m
(5/2+ )
%K=100, %α < 0.001
234Np
4.4 d
(0+ )
%K+%β+=100
235Np
396.1 d
5/2+
%K=99.99740 , %α=0.00260
236Np
1.54e5 a
(6-)
%K=87.3 , %β-=12.5 , %α=0.16
236m1Np
22.5 h
1
%K=52 , %β-=48
237Np
2.144e+6 a
5/2+
%α=100, %SF < 2E-10
237m1Np
45 ns
238Np
2.117 d
2+
%β-=100
238m1Np
112 ns
239Np
2.3565 d
5/2+
%β-=100
240Np
61.9 m
(5+)
%β-=100
240m1Np
7.22 m
1(+)
%β-=99.89 , %IT=0.11
241Np
13.9 m
(5/2+ )
%β-=100
242Np
5.5 m
(6)
%β-=100
242m1Np
2.2 m
(1+ )
%β-=100
243Np
1.8 m
(5/2- )
%β-=100
244Np
2.29 m
(7-)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
228Pu
4 ms
0+
%α=100
229Pu
%α=?
230Pu
0+
%α=?
231Pu
232Pu
34.1 m
0+
%K=77 , %α=23
233Pu
20.9 m
%K+%β+=99.88 , %α=0.12
234Pu
8.8 h
0+
%K ~ 94, %α ~ 6
234m1Pu
3 ns
235Pu
25.3 m
(5/2+ )
%K+%β+=99.9973 , %α=0.0027
235m1Pu
25 ns
236Pu
2.858 a
0+
%α=100, %SF=1.37E-7
236m1Pu
37 ps (0+ )
236m2Pu
34 ns
237Pu
45.2 d
7/2-
%α=0.0042 , %K=99.9958
237m1Pu
0.18 s
1/2+
%IT=100
237m2Pu
85 ns
237m3Pu
1.1 μs
238Pu
87.7 a
0+
%α=100, %SF=1.85E-7 , %MG ~ 6E-15, %SI ~ 1.4E-14
238m1Pu
0.6 ns
238m2Pu
6.0 ns
(0+ )
239Pu
24110 a
1/2+
%α=100, %SF=3.0E-10
239m1Pu
7.5 μs
(5/2+ )
239m2Pu
2.6 ns
(9/2- )
240Pu
6563 a
0+
%α=100 , %SF=5.75E-6
241Pu
14.35 a
5/2+
%β-=99.998, %α=0.00245 , %SF ~ 2.4E-14
241m1Pu
21 μs
241m2Pu
32 ns
242Pu
3.733e+5 a
0+
%α=100 , %SF=5.54E-4
243Pu
4.956 h
7/2+
%β-=100
243m1Pu
45 ns
244Pu
8.08e+7 a
0+
%α=99.879 , %SF=0.121 , %ββ < 3E-11
245Pu
10.5 h
(9/2- )
%β-=100
245m1Pu
90 ns
246Pu
10.84 d
0+
%β-=100
247Pu
2.27 d
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
232Am
79 s
%K ~ 98, %α ~ 2, %KSF=0.069
233Am
234Am
2.32 m
%K=99.961 , %α=0.039 , %KSF=0.0066
235Am
15 m
%K+%β+=?, %α=?
236Am
%K=?, %α=?
237Am
73.0 m
5/2(-)
%α=0.025 , %K=99.975
237m1Am
5 ns
238Am
98 m
1+
%K+%β+>99.99, %α=1.0E-4
238m1Am
35 μs
239Am
11.9 h
(5/2)-
%K=99.990 , %α=0.010
239m1Am
163 ns
(7/2+ )
240Am
50.8 h
(3-)
%K=100, %α=1.9E-4
241Am
432.2 a
5/2-
%α=100, %SF=4.3E-10
241m1Am
1.2 μs
242Am
16.02 h
1-
%β-=82.7 , %K=17.3
242m1Am
141 a
5-
%IT=99.541 , %α=0.459 , %SF < 4.7E-9
242m2Am
14.0 ms
%SF=?, %IT=?
243Am
7370 a
5/2-
%α=100, %SF=3.7E-9
243m1Am
5.5 μs
244Am
10.1 h
(6-)
%β-=100
244m1Am
26 m
1+
%β-=99.9639 , %K=0.0361
245Am
2.05 h
(5/2)+
%β-=100
245m1Am
0.64 μs
246Am
39 m
(7-)
%β-=100
246m1Am
25.0 m
2(-)
%β-=100, %IT<0.01
246m2Am
73 μs
247Am
23.0 m
(5/2)
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
238Cm
2.4 h
0+
%K=96.16 , %α=3.84
239Cm
2.9 h
(7/2- )
%K= 100, %α < 0.1
240Cm
27 d
0+
%α > 99.5 , %K < 0.5 , %SF=3.9E-6
241Cm
32.8 d
1/2+
%K=99.0 , %α=1.0
241m1Cm
15.3 ns
242Cm
162.8 d
0+
%α=100, %SF=6.37E-6
242m1Cm
40 ps
242m2Cm
0.18 μs
243Cm
29.1 a
5/2+
%α=99.71 , %K=0.29 , %SF=5.3E-9
243m1Cm
42 ns
244Cm
18.10 a
0+
%α=100, %SF=1.371E-4
244m1Cm
34 ms
6+
%IT=100, %SF < 7.7E-10
245Cm
8500 a
7/2+
%α=100, %SF=6.1E-7
245m1Cm
13.2 ns
246Cm
4730 a
0+
%α=99.9737 , %SF=0.0263
247Cm
1.56e+7 a
9/2-
%α=100
248Cm
3.40e+5 a
0+
%α=91.61 , %SF=8.39
249Cm
64.15 m
1/2(+)
%β-=100
250Cm
9000 a
0+
%SF ~ 86, %α ~ 8, %β- ~ 6
251Cm
16.8 m
(1/2+ )
%β-=100
252Cm
2 d
0+
%β-=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
238Bk
144 s
%K+%β+=100, %KSF=0.048
239Bk
(7/2+ )
240Bk
4.8 m
%K+%β+=100, %KSF=1E-3 sys
241Bk
(7/2+ )
242Bk
7.0 m
%K+%β+=100
242m1Bk
9.5 ns
242m2Bk
0.60 μs
243Bk
4.5 h
(3/2- )
%K ~ 99.85, %α ~ 0.15
243m1Bk
5 ns
244Bk
4.35 h
(1- )
%K=99.994 , %α=0.006
245Bk
4.94 d
3/2-
%K=99.88 , %α=0.12
245m1Bk
2 ns
246Bk
1.80 d
2(-)
%K=100, %α<0.2 sys
247Bk
1380 a
(3/2- )
%α < 100
248Bk
9 a
(6+)
%α>70
248m1Bk
23.7 h
1(-)
%β-=70 , %K=30 , %α<0.001
249Bk
320 d
7/2+
%β-=99.99855 , %α=0.00145 , %SF=4.76E-8
250Bk
3.217 h
2-
%β-=100
251Bk
55.6 m
(3/2- )
%β-=100, %α ~ 1E-5
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
237Cf
2.1 s
%SF ~ 10 sys
238Cf
21 ms
0+
%SF ~ 100 sys
239Cf
39 s
%α=?
240Cf
1.06 m
0+
%α=87 , %SF ~ 13
241Cf
3.78 m
%K ~ 75, %α ~ 25
242Cf
3.49 m
0+
%α=65 , %SF < 1.4E-2
243Cf
10.7 m
(1/2+ )
%K ~ 86, %α ~ 14
244Cf
19.4 m
0+
%α=70
245Cf
45.0 m
(5/2+ )
%K=64 , %α=36
246Cf
35.7 h
0+
%α=99.9996 , %SF=2.3E-4 , %K<5E-4
246m1Cf
45 ns
247Cf
3.11 h
(7/2+ )
%K=99.965 , %α=0.035
248Cf
333.5 d
0+
%α=99.9971 , %SF=0.0029
249Cf
351 a
9/2-
%α=100, %SF=4.4E-7
250Cf
13.08 a
0+
%α=99.923 , %SF=0.077
251Cf
898 a
1/2+
%α=100
252Cf
2.645 a
0+
%α=96.908 , %SF=3.092
253Cf
17.81 d
(7/2+ )
%β-=99.69 , %α=0.31
254Cf
60.5 d
0+
%SF=99.69 , %α=0.31
255Cf
85 m
(9/2+ )
%β-=100
256Cf
12.3 m
0+
%SF=100, %β-<1 sys %α ~ 1E-6 sys
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
241Es
9 s
%α=100
242Es
40 s
%α ~ 100, %KSF=1.4
243Es
21 s
%K < 70, %α > 30
244Es
37 s
%K=96 , %α=4 , %KSF=0.01 sys
245Es
1.1 m
(3/2- )
%K=60 , %α=40
246Es
7.7 m
(4-,6+)
%K=90.1 , %α=9.9 , %KSF=0.003 sys
247Es
4.55 m
(7/2+ )
%K ~ 93, %α ~ 7
248Es
27 m
(2-,0+ )
%K>99, %α ~ 0.25, %KSF=3E-5 sys
249Es
102.2 m
7/2(+)
%K=99.43 , %α=0.57
250Es
8.6 h
(6+)
%K > 97, %α < 3 sys
250m1Es
2.22 h
1(-)
%K > 99, %α < 1 sys
251Es
33 h
(3/2- )
%K=99.51 , %α=0.49
252Es
471.7 d
(5-)
%α=76 , %K=24 , %β- ~ 0.01
253Es
20.47 d
7/2+
%α=100, %SF=8.9E-6
254Es
275.7 d
(7+)
%α=100, %K<1E-4, %β-=1.74E-6 , %SF<3E-6
254m1Es
39.3 h
2+
%β-=98 , %α=0.33 , %IT<3, %K=0.078 , %SF<0.045
255Es
39.8 d
(7/2+ )
%β-=92.0 , %α=8.0 , %SF=0.0045
256Es
25.4 m
(1+ )
%β-=100
256m1Es
7.6 h
(8+)
%β- ~ 100, %β-SF=0.002
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
242Fm
0.8 ms
0+
%SF=100
243Fm
0.18 s
%α < 100, %SF < 0.5, %K=?
244Fm
3.3 ms
0+
%SF=100
245Fm
4.2 s
%α=100, %SF < 0.11
246Fm
1.1 s
0+
%α=92 , %SF=7.3 , %K<1 sys
247Fm
35 s
%α > 50, %K+%β+ < 50
247m1Fm
9.2 s
%α < 100
248Fm
36 s
0+
%α=93 , %K ~ 7, %SF=0.10
249Fm
2.6 m
(7/2+ )
%K ~ 85 sys %α ~ 15 sys
250Fm
30 m
0+
%α>90, %K<10, %SF=0.0069
250m1Fm
1.8 s
%IT>80, %SF < 8E-5
251Fm
5.30 h
(9/2- )
%K=98.20 , %α=1.80
252Fm
25.39 h
0+
%α=99.9977 , %SF=0.00232
253Fm
3.00 d
1/2+
%K=88 , %α=12
254Fm
3.240 h
0+
%α=99.9408 , %SF=0.0592
255Fm
20.07 h
7/2+
%α=100, %SF=2.3E-5
256Fm
157.6 m
0+
%SF=91.9 , %α=8.1
257Fm
100.5 d
(9/2+ )
%α=99.790 , %SF=0.210
258Fm
370 μs
0+
%SF=100
259Fm
1.5 s
%SF=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
245Md
0.35 s
(7/2)
%α=100
245m1Md
0.90 ms
(1/2- )
246Md
1.0 s
%α=100
247Md
1.12 s
%α=80 , %SF=20
248Md
7 s
%K=80 , %α=20 , %SF < 0.05
249Md
24 s
%K=80 , %α=20
250Md
52 s
%K=93 , %α=7 , %KSF=0.02 sys
251Md
4.0 m
%K > 90, %α < 10
252Md
2.3 m
%K>50, %α<50
253Md
6 m
%K+%β+=100
254Md
10 m
%K < 100
254m1Md
28 m
%K < 100
255Md
27 m
(7/2- )
%K=92 , %α=8 , %SF < 1.4
256Md
78.1 m
(0-,1- )
%K=90.7 , %α=9.3 , %SF < 2.8
257Md
5.52 h
(7/2- )
%K=85 , %α=15 , %SF<1
258Md
51.5 d
(8-)
%α=100, %SF < 0.003, %β- < 0.003, %K < 0.003
258m1Md
57.0 m
(1- )
%K > 70, %SF < 30, %α < 1.2, %β- < 30
259Md
96 m
(7/2- )
%SF ~ 100, %α<1.3
260Md
31.8 d
%SF>73, %α < 25, %β- < 10
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
250No
0.25 ms
0+
%SF=100, %α ~ 0.05 sys
251No
0.8 s
%α ~ 100, %K ~ 1 sys%SF < 8
252No
2.30 s
0+
%α=73.1 , %SF=26.9
253No
1.7 m
(9/2- )
%α ~ 80, %K ~ 20 sys
254No
55 s
0+
%α=90 , %K=10 , %SF=0.17
254m1No
0.28 s
%IT>80
255No
3.1 m
(1/2+ )
%α=61.4 , %K=38.6
256No
2.91 s
0+
%α=99.5 , %SF=0.53 +8-4
257No
25 s
(7/2+ )
%α ~ 100
258No
1.2 ms
0+
%SF=100, %α ~ 1E-3 sys
259No
58 m
(9/2+ )
%α=75 , %K=25 , %SF<10
260No
106 ms
0+
%SF=100
261No
262No
5 ms
0+
%SF=?
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
253Lr
1.3 s
%α=98 , %K ~ 1 sys%SF < 1
254Lr
13 s
%α=78 , %K=22 , %SF < 0.16
255Lr
22 s
%α=85 , %K<30, %SF<0.10
256Lr
28 s
%α>80, %K<20, %SF<0.026
257Lr
0.646 s
(9/2+ )
%α=100, %SF < 6.5E-4
258Lr
3.9 s
%α>95, %K<5, %SF < 5.0
259Lr
6.3 s
%α=77 , %SF=23 , %K<0.5
260Lr
180 s
%α=75 , %K=25
261Lr
39 m
%SF < 100
262Lr
216 m
%SF<10
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
253Rf
1.8 s
%SF ~ 50, %α ~ 50
253m1Rf
50 μs
254Rf
0.5 ms
0+
%SF=100, %α ~ 0.3 sys
254m1Rf
23 μs
255Rf
1.5 s
(9/2- )
%SF=52 , %α=48
256Rf
6.7 ms
0+
%SF=98 +2- 7 , %α=2.2 +73-18
257Rf
4.7 s
(7/2+ )
%α=79.6 , %K=18 , %SF=2.4
258Rf
12 ms
0+
%SF ~ 87, %α ~ 13
259Rf
3.1 s
%α=93 , %SF=7 , %K ~ 0.3
260Rf
20.1 ms
0+
%SF=100
261Rf
65 s
%α>80, %SF<10, %K < 10 sys
262Rf
2.1 s
0+
%SF=100
262m1Rf
47 ms
[2+ ]
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
255Db
1.6 s
%α>47, %SF < 53
256Db
2.6 s
%SF < 40, %α ~ 70, %K ~ 10 sys
257Db
1.3 s
%α=82 , %SF=17 , %K=1 sys
258Db
4.4 s
%α=67 +5-9 , %K=33 +9-5, %SF<34
258m1Db
20 s
%K ~ 100
259Db
260Db
1.52 s
%α > 90.4 , %SF ~ 9.6 , %K<2.5
261Db
1.8 s
%α>50, %SF<50
262Db
34 s
%α ~ 64, %SF ~ 33, %K ~ 3 sys
263Db
27 s
%SF=57 , %α=43
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
258Sg
2.9 ms
0+
%SF=100
259Sg
0.48 s
(1/2+ )
%α=90 , %SF < 20
260Sg
3.6 ms
0+
%α=50 +30-20 , %SF=50 +20-30
261Sg
0.23 s
%α=95 , %SF<10
262Sg
0+
263Sg
0.8 s
%SF ~ 70, %α ~ 30
263m1Sg
0.31 s
[9/2+]
264Sg
0+
265Sg
10 s
[1/2+ ]
%α>50, %SF<50
266Sg
21 s
0+
%α=50 , %SF=50
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
261Bh
11.8 ms
%α=95 , %SF<10
262Bh
102 ms
%α > 80, %SF < 20
262m1Bh
8.0 ms
%α > 70, %SF < 30
263Bh
264Bh
0.44 s
%α=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
264Hs
0.85 ms
0+
%α ~ 100, %SF < 1.5
265Hs
0.9 ms
%α=?
265m1Hs
1.55 ms
[1/2+ ]
%α ~ 100, %SF<9
266Hs
0+
267Hs
26 ms
[9/2+ ]
%α=100
268Hs
0+
269Hs
9 s
[3/2+ ]
%α=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
266Mt
0.8 ms
%α=100
266m1Mt
3.8 ms
%α=100, %SF < 5.5
267Mt
268Mt
0.07 s
[5+,6+]
%α=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
267Ds
3 μs
[11/2- ]
%α=100
268Ds
0+
269Ds
0.17 ms
[1/2+ ]
%α=100
270Ds
0+
271Ds
0.06 s
[3/2+ ]
%α=100
271m1Ds
1.1 ms
[9/2+ ]
%α=100
272Ds
0+
273Ds
0.18 ms
[3/2+ ]
%α=100
273m1Ds
120 ms
[13/2- ]
%α=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
272Rg
1.5 ms
[5+,6+]
%α=100
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
277Cn
0.24 ms
[3/2+ ]
Isotope
Half-life
Spin Parity
Mode(s) or Abundance
285Fl
0.58 ms
%α=?