# Fractals/Iterations in the complex plane/siegel

          The problem is that we are exploring environments based upon irrational numbers through computer machinery which works with finite rationals ! ( Alessandro Rosa )


"A Siegel disk is a (maximal) domain on which a holomorphic map is conjugated to a rotation, whose angle divided by one turn is called the rotation number." A Cheritat[1]

For Siegel disc [2][3] parameter c :

• should be on boundary of hyperbolic component of Mandelbrot set ( internal radius = 1)
• internal angle should be irrational number between 0 and 1 .[4]

Because set of irrationals is uncountable[5] so the number of Julia sets with Siegel disc is infinite.

# Definitions

## Center

Center of Siegel disc is a irrationally indifferent periodic point.

Mane's theorem :

"... appart from its center, a Siegel disk cannot contain any periodic point, critical point, nor any iterated preimage of a critical or periodic point. On the other hand it can contain an iterated image of a critical point." [6]

## Center component of Julia set

In case of c on boundary of main cardioid center component of Julia set is a component containing Siegel disc ( and its center). Critical orbit is a boundary of Siegel disc and center component. All other components are preimages of this component ( see animated image using inverse iterations ).

## Domain

By a classical (nontrivial) result of C.L. Siegel, for certain irrational values of ${\displaystyle \alpha }$  the quadratic polynomial ${\displaystyle e^{2\pi \alpha i}z+z^{2}:\mathbb {C} \to \mathbb {C} }$
is locally linearizable at 0. That is, there exists a local conformal change of coordinate near zero on which this quadratic polynomial becomes the linear map  ${\displaystyle z\to e^{2\pi \alpha i}z}$ .
The maximal domain on which one has such a linearization is called the Sigel disk of that quadratic polynomial.
There are fascinating, and mysterious, relations between the arithmetic properties of ${\displaystyle \alpha }$  and the geometry of the Siegel disks. Davoud Cheraghi[7]


## Radius

### Conformal radius

Conformal radius [8][9]

In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain D viewed from a point z in it. As opposed to notions using Euclidean distance (say, the radius of the largest inscribed disk with center z), this notion is well-suited to use in complex analysis, in particular in conformal maps and conformal geometry.

Definition Given a simply connected domain DC, and a point zD, by the Riemann mapping theorem there exists a unique conformal map f : DD onto the unit disk (usually referred to as the uniformizing map) with f(z) = 0 ∈ D and f′(z) ∈ R+. The conformal radius of D from z is then defined as

${\displaystyle \mathrm {rad} (z,D):={\frac {1}{f'(z)}}\,.}$

The simplest example is that the conformal radius of the disk of radius r viewed from its center is also r, shown by the uniformizing map xx/r. See below for more examples.

One reason for the usefulness of this notion is that it behaves well under conformal maps: if φ : DD′ is a conformal bijection and z in D, then ${\displaystyle \mathrm {rad} (\varphi (z),D')=|\varphi '(z)|\,\mathrm {rad} (z,D)}$ .

The conformal radius can also be expressed as ${\displaystyle \exp(\xi _{x}(x))}$  where ${\displaystyle \xi _{x}(y)}$  is the harmonic extension of ${\displaystyle \log(|x-y|)}$  from ${\displaystyle \partial D}$  to ${\displaystyle D}$ .

### Inner radius

Inner radius of Siegel Disc =

• radius of inner circle, where inner circle with center at fixed point is the biggest circle inside Siegel Disc.[10]
• minimal distance between center of Siel Disc and critical orbit

Code for computing internal radius :

#### Maxima CAS code

Here orbit is a list of complex points z.

f(z,c):=z*z+c $GiveCriticalOrbit(c,iMax):= block( ER:2.0, /* Escape Radius */ z:0+0*%i, /* first point = critical point */ orbit:[z], if (abs(z)>ER) then return(orbit), i:0, loop, /* compute forward orbit */ z:rectform(f(z,c)), orbit:endcons(z,orbit), i:i+1, if ((abs(z)<ER) and (i<iMax)) then go(loop), return(orbit) )$

/* find fixed point alfa */
GiveFixed(c):= float(rectform((1-sqrt(1-4*c))/2))$/* distance between point z and fixed point zf */ GiveDistanceFromCenterTo(z):= abs(z-zf)$

/* inner radius of Siegel Disc ; criticla orbit is a boundary of SD */
GiveInnerRadiusOf(orbit):=lmin(map(GiveDistanceFromCenterTo,orbit))$/* outer radius of Siegel Disc ; criticla orbit is a boundary of SD */ GiveOuterRadiusOf(orbit):=lmax(map(GiveDistanceFromCenterTo,orbit))$

/*------------ const ---------------------------------*/
c:0.113891513213121  +0.595978335936124*%i; /* fc(z) = z*z + c */
NrPoints:400000;

/* ----------- main ---------------------------------------------------*/
zf:GiveFixed(c); /* fixed point = center of Siegel disc */
orbit:GiveCriticalOrbit(c,NrPoints)$innerRadius: GiveInnerRadiusOf(orbit) ; outerRadius: GiveOuterRadiusOf(orbit) ;  #### C code double GiveInternalSiegelDiscRadius(complex double c, complex double a) { /* compute critical orbit and finds smallest distance from fixed point */ int i; /* iteration */ double complex z =0.0; /* critical point */ /* center of Siegel disc = a */ double d; // distance double dMin = 2.0; for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */ { z = z*z + c; /* */ d = cabs(z - a); if (d < dMin) dMin = d; /* smallest distance */ } return dMin; }  ### Outer radius Outer radius of Siegel Disc = radius of outer circle. Outer circle with center at fixed point is minimal circle containing Siegel disc. C code : double GiveExternalSiegelDiscRadius(complex double c, complex double a) { /* compute critical orbit and finds smallest distance from fixed point */ int i; /* iteration */ double complex z =0.0; /* critical point */ /* center of Siegel disc = a */ double d; // distance double dMax = 0.0; for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */ { z = z*z + c; /* */ d = cabs(z - a); if (d > dMax) dMax = d; /* biggest distance */ } return dMax; }  ## Folding Folding in scholaredia[11] ## Siegel disk implosion " ... an arbitrary small change of the multiplier of the Siegel point may lead to an implosion of the Siegel disk - its inner radius collapses to zero " [12] Examples : • from Golden Mean Siegel Disc with rotation number = [0;1,1,1,1,1, ...]= 0.618033988957902 to parabolic Julia set with rotation number (internal angle) = 5/8 = [0;1,1,1,1,1] • SEMI-CONTINUITY OF SIEGEL DISKS UNDER PARABOLIC IMPLOSION : P(n) = [0, 2, 2, n + r] with r = (√5−1)/ 2 , the first three images show the Siegel disk of P(n) for n = 10, 500, 10000, and the last is the virtual Siegel disk of p/q = 2/5 they tend to. Here P(n) > p/q.[13] # Types for c : • on boundary of main cardioid are siegel discs around fixed point alfa • on boundary of period n component are periodic Siegel discs around n-periodic points These Siegel Discs are : • bounded (because the Julia set is bounded) • not smooth (differentiable) in general ## Around fixed point • Julia set consist of infinitely many curves bounding open regions • ${\displaystyle f_{c}\,}$ maps each region into "larger" one, until the region containing the fixed point is reached • inside component containing Siegel disc ${\displaystyle f_{c}\,}$ rotates points on invariant loops around the fixed point[14] so in other words : "${\displaystyle K_{c}}$ has infinitely many components. One of these contains the alpha fixed point. It is mapped to itself by ${\displaystyle f_{c}}$ . This is the Siegel disk." "The Siegel disk is one component and it has infinitely many preimages. If you zoom in to z = 0 with large nmax, you shall see that there are two components touching at z=0". ( Wolf Jung ) # Visualisation Visualisation of dynamical plane : • critical orbit by forward iteration of critical point • Julia set by • boundary of center component by drawing of critical orbit • whole Julia set by inverse iteration of critical orbit • interior • whole interior by average velocity by Chris King • Siegel disc orbits by forward iteration of point inside or on boundary of Siegel Disc[15] ## Average velocity by Chris King Discrete Velocity of non-attracting Basins and Petals: Compute, for the points that don't escape, the average discrete velocity on the orbit[16] ${\displaystyle \left\vert z_{n+1}-z_{n}\right\vert }$  ## Optimisation See also general methods ### Trick 1 If point ( z0 or its forward image zn) is inside inner circle then it is interior point. # Examples ## Methods • Continued fractions • t = [3,2,1000,1,.] = 0.28573467254058817026888613062003 . It gives c = -0.096294753554390530825955047963 + 0.648802699422348309293468536773i[17] • known aproximations of irrational numbers • 1/pi • eulers number • golden ratio • roots of numbers, like • square roots: sqrt(2), sqrt(3), sqrt(5), sqrt(7), sqrt(8), sqrt(15), sqrt(21), sqrt(35), sqrt(49), SQRT(65), sqrt(99), SQRT(100), SQRT(101), SQRT(121), sqrt(200), sqrt(278), • cubic roots, cbrt(3), • logarithms, like ${\displaystyle log_{2}3}$ • descendants of above numbers: • like 1/pi • sum of irrational and rational number : if t is an irrational number and r is a rational the t+r is irrational • fast converging series [18] ### Sequences Sequence of Continued fraction:[19] • [1, 1, 1, . . .] • [1, 1, 1, 20, 1, . . .] • [1, 1, 1, 20, 1, 1, 1, 30, 1, . . .] sequence from Siegel disk to Lea-Fatou flower: • plain • digitated • virtual • Leau-Fatou flower cf(t) t c(t) internal adress center z period inner R outer R [0; 1, 1, 1,...] 0.618033988957902 -0.390540870218399-0.586787907346969i -0.368684439039160-0.337745147130762i 1 0.25 0.4999 [0;3,2,1000,1...] .2857346725405882 0.113891513213121+0.595978335936124i -0.111322907374331+0.487449700270424i 1 .1414016645283217 .5285729063154562 ## values • t = 0.3119660900888915 = [0, 3, 4, 1, 6, 1, 1, 65, 7, 1, 2, 63] ; c = -0.01183223669 + 0.63816572702*%i [20] • t = 0.3572354109849235 = [0, 2, 1, 3, 1, 54, 2, 1, 17, 1, 1, 1, 12, 1, 1, 1, 2, 2] ; c = -0.256625459 + 0.6345309*%i • t = 0.3573615246360573 = [0, 2, 1, 3, 1, 22, 1, 1, 4, 1, 5, 1, 4, 3, 2, 21] ; c = -0.257341 + 0.634456*%i ## Boundary of main cardioid • examples by Jay Hill[21] ### Parametrization The boundary of main cardioid is described by 2 simultaneous equations : • describing fixed point ( period 1 ) under f • describing multiplier[22] ( stability ) of fixed point ( it should be indifferent) ${\displaystyle {\begin{cases}z_{1}^{2}+c=z_{1}\\abs(\lambda (z_{1}))=1\end{cases}}}$ where : ${\displaystyle z_{1}=\left\{z:f_{c}(z)=z\right\}\,}$ ${\displaystyle \lambda (z_{1})=2*z_{1}\,}$ First equation : ${\displaystyle z_{1}^{2}+c=z_{1}}$ ${\displaystyle c=-z_{1}^{2}+z_{1}}$ Second equation : ${\displaystyle \lambda (z_{1})=1\,}$ ${\displaystyle Abs(2z_{1})=1\,}$ ${\displaystyle 2z_{1}=e^{2*\Pi *t*i}\,}$ ${\displaystyle z_{1}=e^{\Pi *t*i}=cos(t)+i*sin(t)\,}$ As a result one gets function describing relation between parameter c and internal angle t : ${\displaystyle c=c(t)={\frac {\lambda }{2}}\left(1-{\frac {\lambda }{2}}\right)={\frac {e^{\Pi *t*i}}{2}}-{\frac {e^{2*\Pi *t*i}}{4}}}$ It is used for computing : • c point of boundary of main cardioid • when t is irrational number then filled Julia set has Siegel disc One can compute boundary point c ${\displaystyle c=c_{x}+c_{y}*i}$ of period 1 hyperbolic component ( main cardioid) for given t using  t = atan2(); // is the argument in radians. cx = 0.5*cos(t) - 0.25*cos(2*t); cy = 0.5*sin(t) - 0.25*sin(2*t);  New parameter can be computed after increasing t using arbitrary step:  t += 0.01; // It is increased by 0.01 so 1/628 turns. // From the new t the new parameter c is computed ..  ### near Liouville numbers ${\displaystyle t=\sum _{k=1}^{\infty }2^{-k!}=2^{-1}+2^{-2}+2^{-6}+2^{-24}+\ldots ={\frac {12845057}{16777216}}\approx 0.7656250596046448}$ t = 0.7656250596046448 gives : • c = 0.294205040086005 -0.448819580822501*i on the main cardioid • c = -0.975495621741693 -0.248796172491005*i on the period 2 component • c = -0.219419079596579 +0.741123657495634*i on the period 3 component along internal ray 1/3 • c = -1.749557112879525 -0.008859942836393*i on the small period 3 cardioid on the main antenna ${\displaystyle t=\sum _{k=1}^{\infty }4^{-k!}=4^{-1}+4^{-2}+4^{-6}+4^{-24}+\ldots \approx 0.3127441406250035}$ ${\displaystyle t=\sum _{k=1}^{\infty }8^{-k!}=8^{-1}+8^{-2}+8^{-6}+8^{-24}+\ldots \approx 0.1406288146972656}$ ${\displaystyle t=\sum _{k=1}^{\infty }16^{-k!}=16^{-1}+16^{-2}+16^{-6}+16^{-24}+\ldots \approx 0.06640630960464478}$ where ! denotes factorial. Image : Maxima cas code: f(n) := n^-1 + n^-2 +n^-6 +n^-24; %i2) f(2); 12845057 (%o2) -------- 16777216 (%i3) float(f(2)); (%o3) 0.7656250596046448 (%i4) float(f(3)); (%o4) 0.445816186560468 (%i5) f(3); 125911658926 (%o5) ------------ 282429536481 (%i6) f(5); 14308929443359376 (%o6) ----------------- 59604644775390625 (%i7) f(6); 921453486852538369 (%o7) ------------------- 4738381338321616896 (%i8) f(7); 31280196802261814842 (%o8) --------------------- 191581231380566414401 (%i9) f(8); 664100801052053340161 (%o9) ---------------------- 4722366482869645213696 (%i10) 8^24; (%o10) 4722366482869645213696  ### radians • 1/(2*pi) = 0.1591549430918953 • 2/(2*pi) = 0.3183098861837907 • 3/(2*pi) = 0.477464829275686 • 4/(2*pi) = 0.6366197723675814 • 5/(2*pi) = 0.7957747154594768 • 6/(2*pi) = 0.954929658551372 Images: ### the Golden Mean rotation number t is the Golden Mean ( exactly Golden ratio conjugate,[23] compare Julia set for Golden Mean which is disconnected Julia set [24] ${\displaystyle t={\frac {{\sqrt {5}}-1}{2}}\approx 0.618033988749895}$ ${\displaystyle t=[0;1,1,1,\dots ]=[1,1,1,\dots ]={\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}$ In Maxima CAS : (%i2) a:[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%o2) [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%i3) t:cfdisrep(a) (%o3) 1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))) (%i4) float(t) (%o4) 0.618033988957902 (%i5) l:%e^(2*%pi*%i*t) (%o5) %e^(-(17711*%i*%pi)/23184) (%i6) c:(l*(1-l/2))/2 (%o6) ((1-%e^(-(17711*%i*%pi)/23184)/2)*%e^(-(17711*%i*%pi)/23184))/2 (%i7) float(rectform(c)) (%o7) -.5867879078859505*%i-.3905408691260131  so ${\displaystyle c\approx -0.390540870218399-0.586787907346969*i}$ Compare with : • Quadratic Julia sets depicted by combined methods[26] • Golden mean Siegel disk by Curtis T McMullen [27] • Siegel Disk Fractal by Jim Muth [28] • Siegel disk by Davoud Cheraghi[29] • a better Siegel disk program in Mathematica From Roger Bagula[30] • Xander's image [31] • Images by Arnaud Chéritat[32] • irrational by Faber #### Rays landing on the critical point There are 2 rays landing on the critical point z=0 with angles:[33]  ${\displaystyle \omega /2}$ ${\displaystyle (\omega +1)/2}$  Here[34]  ${\displaystyle \omega =[0;2^{0},2^{1},2^{1},2^{2},2^{3},...]=0.709803}$  where the powers of 2 form the Fibonacci sequence :[35]  ${\displaystyle 0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\;\ldots \;}$  These rays are preimages of ray ${\displaystyle \omega }$ which land on the critical value. ### digitated algorithm goes like this : • start with rational number p/q ( q is a number of digits • find continous fraction of p/q using for example : wolfram alpha • lets choose 2/7 = [0; 3, 2] • for n from 0 to 10 compute rotation number = t(n) = [0;3, 2 , 10^n, golden_ratio] • for each t compute multiplier m = e^(2*pi*i*t) and c = (m*(1-m/2))/2, • for each c draw critical orbit #### 1/2  [0;2,10^0, GoldenRatio] = 0.3819660112501051517954131656343618822796908201942371378645513772947395371810975502927927958106088625[36] [0;2,10^1, GoldenRatio] = 0.4775140100981009996157078147705459192853678713412804123092036673992538239565035505055878663397199776 [0;2,10^2, GoldenRatio] = 0.4975276418049443654168822249489777631733396751888937557910272646236455872099717190261209452982670182 [0;2,10^3, GoldenRatio] = 0.4997502791963461829064406841975638383643273854865268095992275328965717970298619920531024931799175222 [0;2,10^4, GoldenRatio] = 0.4999750027947725068093934556288852812751613102402893275180237493139184231871314468863992103480081398 [0;2,10^5, GoldenRatio] = 0.4999975000279505372222411883578948194038778053684924551662056284491619191237767514609446551752982620 [0;2,10^6, GoldenRatio] ≈ 0.4999997500002795081846878230972820064874630120375394060599983649731088601118927011908445914889153575 [0;2,10^7, GoldenRatio] ≈ 0.4999999750000027950846593747720590697092705648336656666550099352279885262457471130077351190950368647 [0;2,10^8, GoldenRatio] ≈ 0.4999999975000000279508494062473746989708466400627903143635595029928608488311534417391176743667414601 [0;2,10^9, GoldenRatio] = 0.4999999997500000002795084968749737124005323296851266699307427070578490529472905394986264318888387868 [0;2,10^10, GoldenRatio] ≈ 0.4999999999750000000027950849715622371205464056480586232583076030201151399460674665945145904063730995 [0;2,10^11, GoldenRatio] ≈ 0.4999999999975000000000279508497184348712051181647153557573019083692657334910230489541137897282568504 [0;2,10^12, GoldenRatio] ≈ 0.4999999999997500000000002795084971871612120511470579770310133815923588852631868226288826667637222837 [0;2,10^13, GoldenRatio] ≈ 0.4999999999999750000000000027950849718744246205114671208526574427310807059077461659968395909016599809 [0;2,10^14, GoldenRatio] ≈ 0.4999999999999975000000000000279508497187470587051146708626348091578511118332834054112155667123629005 [0;2,10^15, GoldenRatio] ≈ 0.4999999999999997500000000000002795084971874733995511467085917589150515616367008796489196018543201296 [0;2,10^16, GoldenRatio] ≈ 0.4999999999999999750000000000000027950849718747368080114670859141302328629213837245072986771954833911 [0;2,10^17, GoldenRatio] ≈ 0.4999999999999999975000000000000000279508497187473708926146708591409564368639443385654331302200729603 [0;2,10^18, GoldenRatio] ≈ 0.4999999999999999997500000000000000002795084971874737117386467085914095297794629164357828552071705414 [0;2,10^19, GoldenRatio] ≈ 0.4999999999999999999750000000000000000027950849718747371201989670859140952943357115116628413693411086 [0;2,10^20, GoldenRatio] ≈ 0.4999999999999999999975000000000000000000279508497187473712048021708591409529430112233513589149747868 ... [0;2] = 1/2 = 0.5  using quad double precision : t(0) = 3.81966011250105151795413165634361882279690820194237137864551377e-01 ; c = -3.90540870218400050669762600713798485817583715938583500790716491e-01 ; 5.86787907346968751196714643055715840096745752123320842032245424e-01 t(1) = 4.77514010098100999615707814770545919285367871341280412309203667e-01 ; c = -7.35103725789203166246364354183070697092321099215970115885457098e-01 ; 1.40112549815936743590686010452273467218741353649054870130630558e-01 t(2) = 4.97527641804944365416882224948977763173339675188893755791027265e-01 ; c = -7.49819025417749776930986763368388660297294249313031793877713589e-01 ; 1.55327228158391795314525351457527867568101147692293037994954915e-02 t(3) = 4.99750279196346182906440684197563838364327385486526809599227533e-01 ; c = -7.49998153581339423261635407668242134664913541791449158951684018e-01 ; 1.56904047490965613194389295941701415441031256575211288282884094e-03 t(4) = 4.99975002794772506809393455628885281275161310240289327518023749e-01 ; c = -7.49999981498629125645545136832080395069079925634197165921129604e-01 ; 1.57062070991569266952536106210409130728490029437750411952649155e-04 t(5) = 4.99997500027950537222241188357894819403877805368492455166205628e-01 ; c = -7.49999999814949055379035496840776829777984829652802229165703441e-01 ; 1.57077876479293075511736069683515881947782844720535147967721515e-05 t(6) = 4.99999750000279508184687823097282006487463012037539406059998365e-01 ; c = -7.49999999998149453312747388186444210086067957518121660969151546e-01 ; 1.57079457059156244743576144811256589754652192800174232944684020e-06 t(7) = 4.99999975000002795084659374772059069709270564833665666655009935e-01 ; c = -7.49999999999981494495885914313759501577872560098720076587742563e-01 ; 1.57079615117453182906803046090425827728536858759594155863970088e-07 t(8) = 4.99999997500000027950849406247374698970846640062790314363559503e-01 ; c = -7.49999999999999814944921617531908891370473818724298060108792696e-01 ; 1.57079630923285982648802540286825950414334929521039394902627564e-08 t(9) = 4.99999999750000000279508496874973712400532329685126669930742707e-01 ; c = -7.49999999999999998149449178933702694145524879491347408142864355e-01 ; 1.57079632503869293681972526129998193269783324874397448954896142e-09 t(10) = 4.99999999975000000002795084971562237120546405648058623258307603e-01 ; c = -7.49999999999999999981494491752095410030080568840077963364830374e-01 ; 1.57079632661927625095878938346134344643704271149725816320948648e-10 t(11) = 4.99999999997500000000027950849718434871205118164715355757301908e-01 ; c = -7.49999999999999999999814944917483712483337770357969922549543000e-01 ; 1.57079632677733458240375473417333652732358282974043728923647563e-11 t(12) = 4.99999999999750000000000279508497187161212051147057977031013382e-01 ; c = -7.49999999999999999999998149449174799883216409502184216102177862e-01 ; 1.57079632679314041554856185862662707966424239622019267641300599e-12 t(13) = 4.99999999999975000000000002795084971874424620511467120852657443e-01 ; c = -7.49999999999999999999999981494491747961590547126303840172625197e-01 ; 1.57079632679472099886304567696577418001577729533565273081497266e-13 t(14) = 4.99999999999997500000000000027950849718747058705114670862634809e-01 ; c = -7.49999999999999999999999999814944917479578663854294268739087328e-01 ; 1.57079632679487905719449408985862706763478042275954257084690447e-14 t(15) = 4.99999999999999750000000000000279508497187473399551146708591759e-01 ; c = -7.49999999999999999999999999998149449174795749396925973912562169e-01 ; 1.57079632679489486302763893145850173816965190682509858763917154e-15 t(16) = 4.99999999999999975000000000000002795084971874736808011467085914e-01 ; c = -7.49999999999999999999999999999981494491747957456727642770350276e-01 ; 1.57079632679489644361095341562159509904086589961983101670245908e-16 t(17) = 4.99999999999999997500000000000000027950849718747370892614670859e-01 ; c = -7.49999999999999999999999999999999814944917479574530034810734727e-01 ; 1.57079632679489660166928486403793549406616456447514036426396814e-17 t(18) = 4.99999999999999999750000000000000000279508497187473711738646709e-01 ; c = -7.49999999999999999999999999999999998149449174795745263106490379e-01 ; 1.57079632679489661747511800887956984415807620355720412842525869e-18 t(19) = 4.99999999999999999975000000000000000002795084971874737120198967e-01 ; c = -7.49999999999999999999999999999999999981494491747957452593823287e-01 ; 1.57079632679489661905570132336373328227316118501557102010628498e-19 t(20) = 4.99999999999999999997500000000000000000027950849718747371204802e-01 ; c = -7.49999999999999999999999999999999999999814944917479574525900991e-01 ; 1.57079632679489661921375965481214962611572862167871366529561451e-20 5.00000000000000000000000000000000000000000000000000000000000000e-01 c = -7.50000000000000000000000000000000000000000000000000000000000000e-01 ; 0.00000000000000000000000000000000000000000000000000000000000000e+00  #### 1/3 1/3 = [0; 3] = 0.3333333..... = 0.(3)  /* Maxima CAS batch file */ kill(all)$
remvalue(all)$/* a = [1, 1, ...] = golden ratio */ g: float((1+sqrt(5))/2)$

GiveT(n):= float(cfdisrep([0,3,10^n,g]))$GiveC(t):= block( [l, c], l:%e^(2*%pi*%i*t), c : (l*(1-l/2))/2, c:float(rectform(c)), return(c) )$

compile(all)$for n:0 step 1 thru 10 do ( t:GiveT(n), c:GiveC(t), print("n=" ,n ," ; t= ", t , "; c = ", c) );  The result : n= 0 t= 0.276393202250021 c = 0.5745454151066983 %i + 0.1538380639536643 n= 1 t= 0.3231874668087892 c = 0.6469145331346998 %i - 0.07039249652637808 n= 2 t= 0.3322326933513446 c = 0.649488031636116 %i - 0.1190170769366243 n= 3 t= 0.3332223278292314 c = 0.6495187369145559 %i - 0.1243960357918423 n= 4 t= 0.3333222232791965 c = 0.6495190496732967 %i - 0.1249395463818514 n= 5 t= 0.3333322222327929 c = 0.6495190528066728 %i - 0.1249939540657306 n= 6 t= 0.3333332222223279 c = 0.6495190528380125 %i - 0.1249993954008478 n= 7 t= 0.3333333222222233 c = 0.6495190528383257 %i - 0.1249999395400275 n= 8 t= 0.3333333322222222 c = 0.6495190528383289 %i - 0.1249999939540021 n= 9 t= 0.3333333332222222 c = 0.649519052838329 %i - 0.1249999993954 n= 10 t= 0.3333333333222222 c = 0.649519052838329 %i - 0.1249999999395399 (%i1) a:[0,3,a,g]; (%o1) [0, 3, a, g] (%i2) cfdisrep(a); 1 (%o2) --------- 1 3 + ----- 1 a + - g (%i3)  quad precision (t and c ): // git@gitlab.com:adammajewski/InfoldingSiegelDisk_in_c_1over3_quaddouble.git t(0) = 2.76393202250021030359082633126872376455938164038847427572910275e-01 c = 1.53838063953664121728826496636884090757364247198001213740163411e-01 ; 5.74545415106698547533205192239966882171974656527110206599567294e-01 t(1) = 3.23187466808789167460075188398563024584074865168574811248120429e-01 c = -7.03924965263779817446805013170440359580350303484669206412737432e-02 ; 6.46914533134699876497054948648970463828561836818357035393585013e-01 t(2) = 3.32232693351344645328281111249254263489588693253128095562021379e-01 c = -1.19017076936624259031145944667596002534849695014545153950004772e-01 ; 6.49488031636116063199566861137419722741268462810784951116992269e-01 t(3) = 3.33222327829231396180972123516749255293978654448636072108442295e-01 c = -1.24396035791842227723833496314974550377900499387491577355907843e-01 ; 6.49518736914555954950215798854805983039885153673988260646103979e-01 t(4) = 3.33322223279196467461199806968881974980654735721758806121437081e-01 c = -1.24939546381851514024915251452349793356883503222467666248987991e-01 ; 6.49519049673296680160381595728499835459227600854334414827754792e-01 t(5) = 3.33332222232792869679683559108320427563171464137271516297451542e-01 c = -1.24993954065730675441065991629838614047426783311966520549106346e-01 ; 6.49519052806672859063863722773813069312955136848755592503084124e-01 t(6) = 3.33333222222327929601887145303917917465162347855208962292566660e-01 c = -1.24999395400848041352293443820430989442841091304288844173462574e-01 ; 6.49519052838012418008903728036348898528045582108441153259758357e-01 t(7) = 3.33333322222223279296923970287377310413140932425289152909012301e-01 c = -1.24999939540027553391850682937180513243494903336945859380511500e-01 ; 6.49519052838325819396349608234642964505989043061737603462233217e-01 t(8) = 3.33333332222222232792970144802560581866962241709924341887457124e-01 c = -1.24999993954002182831269818316294274223873134947476282441764677e-01 ; 6.49519052838328953416022146474675036126754173503570601306155105e-01 t(9) = 3.33333333222222222327929702353125377874576632652638574699840874e-01 c = -1.24999999395400212558047347868208906283402972461774034404632366e-01 ; 6.49519052838328984756224669944909300404586792219705302525018521e-01 t(10) = 3.33333333322222222223279297024436353559326388564904699626466712e-01 c = -1.24999999939540021198553937965723010802762347867693302140297851e-01 ; 6.49519052838328985069626700977700316581410665652851539203616381e-01 t(11) = 3.33333333332222222222232792970245268635374696979418341612961499e-01 c = -1.24999999993954002119282885827879858604573185189849864410972761e-01 ; 6.49519052838328985072760721293826315500672008735227141791647866e-01 t(12) = 3.33333333333222222222222327929702453591453528488135105883396848e-01 c = -1.24999999999395400211922563503100579972022557444713095237600026e-01 ; 6.49519052838328985072792061496993373578630511176383107487756736e-01 t(13) = 3.33333333333322222222222223279297024536819635066408216696619311e-01 c = -1.24999999999939540021192199099513183456854230374819467960534760e-01 ; 6.49519052838328985072792374899025049957498862929395598811798211e-01 t(14) = 3.33333333333332222222222222232792970245369101450445609885075510e-01 c = -1.24999999999993954002119219337443349599800479106023686175774584e-01 ; 6.49519052838328985072792378033045366727085635213738283716661855e-01 t(15) = 3.33333333333333222222222222222327929702453691919604237626654112e-01 c = -1.24999999999999395400211921928019255272520717007610023985861823e-01 ; 6.49519052838328985072792378064385569894787301025348531521608111e-01 t(16) = 3.33333333333333322222222222222223279297024536920101142157794353e-01 c = -1.24999999999999939540021192192744674730377477910267401190215182e-01 ; 6.49519052838328985072792378064698971926464323481553400821453061e-01 t(17) = 3.33333333333333332222222222222222232792970245369201916521359471e-01 c = -1.24999999999999993954002119219273894965069001852640340429175752e-01 ; 6.49519052838328985072792378064702105946781093711913538281273390e-01 t(18) = 3.33333333333333333222222222222222222327929702453692020070313376e-01 c = -1.24999999999999999395400211921927383771427212725879688582341355e-01 ; 6.49519052838328985072792378064702137286984261414222937744638416e-01 t(19) = 3.33333333333333333322222222222222222223279297024536920201608234e-01 c = -1.24999999999999999939540021192192738319891924397994124922164696e-01 ; 6.49519052838328985072792378064702137600386293091246037537360833e-01 t(20) = 3.33333333333333333332222222222222222222232792970245369202016987e-01 c = -1.24999999999999999993954002119219273831416684471053474052374312e-01 ; 6.49519052838328985072792378064702137603520313408016268541086146e-01 1/3 = 3.33333333333333333333333333333333333333333333333333333333333333e-01 c = -1.25000000000000000000000000000000000000000000000000000000000000e-01 ; 6.49519052838328985072792378064702137603551970178892735520927617e-01  #### 9/13 Example from scholarpedia[37] fpprec:60; a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1]; b:cfdisrep(a); c:bfloat(b); e0:bfloat(cfdisrep([0,1,2,4,4,c])); e1:bfloat(cfdisrep([0,1,2,4,4,10,c])); e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c])); e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c])); e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c])); e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c])); e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c])); e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c])); e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c])); e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c])); e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c])); d01:e0-e1; d12:e1-e2; d23:e2-e3; d34:e3-e4; d45:e4-e5; d56:e5-e6; d67:e6-e7; d78:e7-e8; d89:e8-e9; d910:e9-e10; plot2d( [discrete, [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10] ]); plot2d( [discrete, [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10], [ d01, d12, d23, d34, d45, d56, d67, d78, d89, d910] ]);  result : /* http://maxima-online.org/?inc=r972897020*/ (%i1) fpprec:60; (%o1) 60 (%i2) a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1]; (%o2) [4, 4, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1] (%i3) b:cfdisrep(a); 1 (%o3) 4 + ------------------------------------------------------------- 1 4 + --------------------------------------------------------- 1 1 + ----------------------------------------------------- 1 2 + ------------------------------------------------- 1 4 + --------------------------------------------- 1 4 + ----------------------------------------- 1 4 + ------------------------------------- 1 4 + --------------------------------- 1 1 + ----------------------------- 1 1 + ------------------------- 1 1 + --------------------- 1 1 + ----------------- 1 1 + ------------- 1 1 + --------- 1 1 + ----- 1 1 + - 1 (%i4) c:bfloat(b); (%o4) 4.21317492083944457390374624758406097076199745041327978287391b0 (%i5) e0:bfloat(cfdisrep([0,1,2,4,4,c])); (%o5) 6.90983385919269333377918690283855111536837789999636063622128b-1 (%i6) e1:bfloat(cfdisrep([0,1,2,4,4,10,c])); (%o6) 6.90940653590858345205900333693231459583929903277216782489572b-1 (%i7) e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c])); (%o7) 6.90912381108070743953290526690429251279660195160237673633147b-1 (%i8) e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c])); (%o8) 6.90909421331077674912831355964859580252020147075327146840293b-1 (%i9) e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c])); (%o9) 6.90909123965376225147306218871548821073377014383362752163859b-1 (%i10) e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c])); (%o10) 6.90909094214860373154103745626419162194365585020091374566415b-1 (%i11) e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c])); (%o11) 6.90909091239669264887898182284536032143262445829248943506691b-1 (%i12) e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c])); (%o12) 6.90909090942148758764580793509997058314465248663422318011972b-1 (%i13) e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c])); (%o13) 6.90909090912396694199216055201332263713180254323741379104146b-1 (%i14) e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c])); (%o14) 6.9090909090942148760314918534473410035349593667510644807155b-1 (%i15) e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c])); (%o15) 6.90909090909123966942147194332785516326702737819678667743891b-1 (%i16) d01:e0-e1; (%o16) 4.27323284109881720183565906236519529078867224192811325562048b-5 (%i17) d12:e1-e2; (%o17) 2.82724827876012526098070028022083042697081169791088564253857b-5 (%i18) d23:e2-e3; (%o18) 2.95977699306904045917072556967102764004808491052679285309819b-6 (%i19) d34:e3-e4; (%o19) 2.97365701449765525137093310759178643132691964394676434841921b-7 (%i20) d45:e4-e5; (%o20) 2.97505158519932024732451296588790114293632713775974431973635b-8 (%i21) d56:e5-e6; (%o21) 2.97519110826620556334188313005110313919084243105972446795396b-9 (%i22) d67:e6-e7; (%o22) 2.97520506123317388774538973828797197165826625494718990624414b-10 (%i23) d78:e7-e8; (%o23) 2.97520645653647383086647946012849943396809389078262402933403b-11 (%i24) d89:e8-e9; (%o24) 2.97520659606686985659816335968431764863493103259592529156942b-12 (%i25) d910:e9-e10; (%o25) 2.97520661001991011948584026793198855427780327658967717649496b-13  These Siegel disks have 13 digits. SO it will be near t=n/13, probably :  ${\displaystyle {\frac {9}{13}}=0.692307692307692307692307692307692307692307692307692307692...=0.{\overline {692307}}}$  this number is irreducible and it's decimal expansion has period 6 [38] Numerical computations goes near :  ${\displaystyle {\frac {38}{55}}=0.690909090909090909090909090909090909090909090909090909090...=0.6{\overline {90}}}$  It is irreducible fraction . It's decimal expansion has period 2 [39] Important numbers :  8/13 = 0.6153846153846154 = [0; 1, 1, 1, 1, 2] 38/55 = 0.690909090909090(90) = [0; 1, 2, 4, 4] 9/13 = 0.692307692307(692307) = [0; 1, 2, 4]  #### QUADRATIC SIEGEL DISKS WITH SMOOTH BOUNDARIES Example by XAVIER BUFF AND ARNAUD CHERITAT[40] α = ( 5 + 1)/2 = [1, 1, 1, 1, . . .],  α(1) = [1, 1, 1, 1, 1, 1, 25, 1, 1, 1, . . .]  α(2) = [1, 1, 1, 1, 1, 1, 25, 1010 , 1, 1, 1, . . .]  #### 2/7 rotation number t is :[41] ${\displaystyle t=[3,2,1000,1,...]=[0;3,2,1000,1\dots ]={\cfrac {1}{3+{\cfrac {1}{2+{\cfrac {1}{1000+{\cfrac {1}{1+\ddots }}}}}}}}}$ In Maxima CAS one can compute it : (%i2) kill(all) (%o0) done (%i1) a:[0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%o1) [0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%i2) t:cfdisrep(a) (%o2) (1)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+ (1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) (%i3) float(t) (%o3) .2857346725405882 (%i4) l:%e^(2*%pi*%i*t) (%o4) %e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) (%i5) c:(l*(1-l/2))/2 (%o5) ((1-(%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2))*%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2) (%i6) float(rectform(c)) (%o6) .5959783359361234*%i+.1138915132131216  So t = .2857346725405882 c = 0.113891513213121 +0.595978335936124 i  How one can find limit of [3,2,1000,1,...] ? Here is explanation of Bill Wood "I don't know if Maxima knows much about the algebra of continued fractions, but it can be of some help hacking out the manipulation details of a derivation. A most useful fact is that  [a1, a2, a3, ...] = a1 + 1/[a2, a3, ...]  provided the continued fraction converges. If we apply that three times by hand to [3, 2, 1000, 1, 1, ...] we obtain  3 + 1/(2 + 1/(1000 + 1/[1, 1, ...]))  Now it is known that [1, 1, ...] converges to the Golden Ratio = (1+sqrt(5))/2. So now we can use Maxima as follows:  (%i20) 3+(1/(2+(1/(1000+(1/((1+sqrt(5))/2)))))); 1 (%o20) ---------------------- + 3 1 ------------------ + 2 2 ----------- + 1000 sqrt(5) + 1 (%i21) factor(%o13); 7003 sqrt(5) + 7017 (%o21) ------------------- 2001 sqrt(5) + 2005 (%i22) %o21,numer; (%o22) 3.499750279196346  You set a to [0, 3, 2, 1000, 1, 1, ...], which by our useful fact must be the reciprocal of [3, 2, 1000, 1, 1, ...], and indeed the reciprocal of 3.499750279196346 is 0.2857346725405882, which is what your float(t) evaluates to, so we seem to get consistent results. If all of the continued fractions for the rotation numbers exhibited on the link you provided do end up repeating 1 forever then the method I used above can be used to determine their limits as ratios of linear expressions in sqrt(5)." Bill Wood Check fraction:[42]  2/7 = [0; 3, 2] = 0.285714285714285714285714285714285714285714285714285714285... = 0.(28571)  /* Maxima CAS batch file */ kill(all)$
remvalue(all)$/* a = [1, 1, ...] = golden ratio */ g: float((1+sqrt(5))/2)$

GiveT(n):= float(cfdisrep([0,3,2,10^n,g]))$GiveC(t):= block( [l, c], l:%e^(2*%pi*%i*t), c : (l*(1-l/2))/2, c:float(rectform(c)), return(c) )$

compile(all)\$

for n:0 step 1 thru 10 do (
t:GiveT(n),
c:GiveC(t),
print("n=", n , " ; t= ", t, " ; c = ", c)
);



and result :

"n="" "0" "" ; t= "" "0.2956859994078892" "" ; c = "" "0.6153124581224951*%i+0.06835556662164869" "
"n="" "1" "" ; t= "" "0.2875617458610296" "" ; c = "" "0.599810068302661*%i+0.1057522049785167" "
"n="" "2" "" ; t= "" "0.285916253540726" "" ; c = "" "0.5963646240901801*%i+0.1130872227062027" "
"n="" "3" "" ; t= "" "0.2857346725405881" "" ; c = "" "0.5959783359361234*%i+0.1138915132131216" "
"n="" "4" "" ; t= "" "0.2857163263170416" "" ; c = "" "0.5959392401496606*%i+0.1139727184036316" "
"n="" "5" "" ; t= "" "0.2857144897937824" "" ; c = "" "0.5959353258460209*%i+0.1139808467588366" "
"n="" "6" "" ; t= "" "0.2857143061224276" "" ; c = "" "0.5959349343683512*%i+0.1139816596727942" "
"n="" "7" "" ; t= "" "0.2857142877551018" "" ; c = "" "0.5959348952201112*%i+0.1139817409649742" "
"n="" "8" "" ; t= "" "0.2857142859183673" "" ; c = "" "0.5959348913052823*%i+0.1139817490942002" "
"n="" "9" "" ; t= "" "0.2857142857346939" "" ; c = "" "0.5959348909137995*%i+0.1139817499071228" "
"n="" "10" "" ; t= "" "0.2857142857163265" "" ; c = "" "0.5959348908746511*%i+0.1139817499884153" "


or using quad double precision ( qd library) :

./a.out
t(0)  = 2.95685999407889202537083517598191479880016272621355940112392033e-01
t(1)  = 2.87561745861029587995763349374215634699576366286473943622953355e-01
t(2)  = 2.85916253540726005296290351777281930430489555597203400050155169e-01
t(3)  = 2.85734672540588170268886130620030074831025799037914834916050614e-01
t(4)  = 2.85716326317041655001121670485871240052920659174284332597727197e-01
t(5)  = 2.85714489793782460278353122604001584582831972498394265344044955e-01
t(6)  = 2.85714306122427620319960416932943500595980573209849938259909447e-01
t(7)  = 2.85714287755101827223406574888790339883583192331314008460721020e-01
t(8)  = 2.85714285918367344802846109454092778340593443209054635310671634e-01
t(9)  = 2.85714285734693877529661113954572642424219379874139361821960174e-01
t(10) = 2.85714285716326530612031305016895554055165716643985018539739541e-01
t(11) = 2.85714285714489795918365211009352427817161964062263710683311655e-01
2/7   = 2.85714285714285714285714285714285714285714285714285714285714286e-01


#### 2/9

(%i7) cf(2/9);
(%o7)                              [0, 4, 2]
(%i8) cf(2/9 + 0.1);
(%o8)                           [0, 3, 9, 1, 2]
(%i9) cf(2/9 + 0.01);
(%o9)                        [0, 4, 3, 3, 1, 3, 4]
(%i10) cf(2/9 + 0.001);
(%o10)                      [0, 4, 2, 11, 1, 9, 8]
(%i11) cf(2/9 + 0.0001);
(%o11)                        [0, 4, 2, 123, 81]
(%i12) cf(2/9 + 0.00001);
(%o12)                      [0, 4, 2, 1234, 8, 10]
(%i13) cf(2/9 + 0.000001);
(%o13)                   [0, 4, 2, 12345, 4, 3, 1, 4]
(%i14) cf(2/9 + 0.0000001);
(%o14)                    [0, 4, 2, 123456, 2, 1, 8]
(%i15) cf(2/9 + 0.00000001);
(%o15)                       [0, 4, 2, 1234567, 2]
(%i16) cf(2/9 + 0.000000001);
(%o16)                        [0, 4, 2, 12345678]
(%i17) cf(2/9 + 0.0000000001);
(%o17)                       [0, 4, 2, 123456806]
(%i18) cf(2/9 + 0.00000000001);
(%o18)                       [0, 4, 2, 1234571860]
(%i19) cf(2/9 + 0.000000000001);
(%o19)                      [0, 4, 2, 12345935203]
(%i20) cf(2/9 + 0.0000000000001);
(%o20)                      [0, 4, 2, 123453937153]
(%i21) cf(2/9 + 0.00000000000001);
(%o21)                     [0, 4, 2, 1234539371537]
(%i22) cf(2/9 + 0.000000000000001);
(%o22)                     [0, 4, 2, 12794317123211]
(%i23)


# Questions

• is it possible to find function which maps circle to Siegel disc ?
• what happens between virtual Siegel disk and parabolic critical orbit ?

## which external rays ( parameter rays) land on the Siegel points c ? Rays for irrational angle ?

What are the angles of external rays that land on the Cremer and Siegel parameter points c ?

Those that do not belong to any closed wake. They are irrational and I guess there is not much more known. You can approximate them with angles of suitable wakes ...

This something analogous to the construction of the middle-1/3 standard Cantor set by removing open intervals successively.

• Start with [0,1].
• Remove (1/3, 2/3).
• Remove (1/7, 2/7) and (5/7, 6/7)
• ...

There is a Cantor set of angles remaining, which are the angles of all rays landing at the main cardioid. The rational angles belong to roots and the irrational angles to Siegel and Cremer parameters. Moreover, each rational angle is a boundary point of an interval removed after finitely many steps. So in the following construction of removing closed intervals, you do not get a Cantor set, and only the irrational angles remain:

• Start with [0,1].
• Remove [1/3, 2/3].
• Remove [1/7, 2/7] and [5/7, 6/7]

# References

• Local connectivity of some Julia sets containing a circle with an irrational rotation. / Petersen, Carsten Lunde. In: Acta Mathematica, Vol. 177, No. 2, 1996, p. 163-224.
• Building blocks for quadratic Julia sets. Article in Transactions of the American Mathematical Society 351(3):1171-1201 · January 1999 DOI: 10.1090/S0002-9947-99-02346-6