Fractals/Mathematics/sequences
Difference between sequences, orders and series
edittypes of sequences
editInteger sequences
editFraction sequences
editFarey sequence
editThe Farey sequence of order n is the sequence of completely reduced vulgar fractions between 0 and 1 which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.
Each Farey sequence starts with the value 0, denoted by the fraction 0⁄1, and ends with the value 1, denoted by the fraction 1⁄1 (although some authors omit these terms).
Farey Addition = the mediant of two fractions :
Terms
- next term = child
- Previous terms = parents[1]
Farey tree = Farey sequence as a tree
Sorted |
---|
F1 = {0/1, 1/1} F2 = {0/1, 1/2, 1/1} F3 = {0/1, 1/3, 1/2, 2/3, 1/1} F4 = {0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1} F5 = {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1} F6 = {0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1} F7 = {0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1} F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1} |
See also
Sequences and orders on the parameter plane
editSequences of Misiurewicz points
edit- external ray for angle 1/(4*2^n) land on the tip of the first branch: 1/4, 1/8, 1/16, 1/32, 1/64, ...
- 1/(6*2^n) - land on the second branch
- principal Misiurewicz point of wake p/q
- primary_separators
degree
edit-
cubic
take the Misiurewicz point for and increase n ( proposed by Owen Maresh)
The constant (parameter c) for the quadratic (n=2) , cubic ( n=3), and quartic (n=4) polynomials are:
- (-0.7432918908524301520519705530861564778806 ,0.1312405523087976002753516038253522297699);
- -0.0649150006787816892861875745218343125883 , 0.76821968591243610206311097043854440463 );
- (-0.593611822136354943067129147813253628530 ,0.5405019391915187246754930586066158919613 );
Point c is a Misiurewicz point
- tip of the longest branch ( ftip )
- The angle 8388607/25165824 or 01010101010101010101010p01 has preperiod = 23 and period = 2
- from wake 12/25 , with
- center c = -0.739829393511579 +0.125072144080321 i and period = 25
- root point c = -0.738203140939397 +0.124839088573366 i
m-describe 53 30 500 -0.7432918908524301 0.1312405523087976 4 the input point was -7.4329189085243008e-01 + 1.3124055230879761e-01 i nearby hyperbolic components to the input point: - a period 1 cardioid with nucleus at 0.00000e+00 + 0.00000e+00 i the component has size 1.00000e+00 and is pointing west the atom domain has size 0.00000e+00 the atom domain coordinates of the input point are -nan + -nan i the atom domain coordinates in polar form are -nan to the east the atom coordinates of the input point are -0.74329 + 0.13124 i the atom coordinates in polar form are 0.75479 to the west the nucleus is 7.54789e-01 to the east of the input point - a period 2 circle with nucleus at -1.00000e+00 + 0.00000e+00 i the component has size 5.00000e-01 and is pointing west the atom domain has size 1.00000e+00 the atom domain coordinates of the input point are 0.25671 + 0.13124 i the atom domain coordinates in polar form are 0.28831 to the east-north-east the atom coordinates of the input point are 0.51342 + 0.26248 i the atom coordinates in polar form are 0.57662 to the east-north-east the nucleus is 2.88311e-01 to the west-south-west of the input point external angles of this component are: .(01) .(10) the point escaped with dwell 472.09881 nearby Misiurewicz points to the input point: - 24p4 with center at -7.43291890852430202931624325972515e-01 + 1.31240552308797604770845906581477e-01 i the Misiurewicz domain has size 1.07586e-03 the Misiurewicz domain coordinate radius is 1.1395e-13 the center is 1.21387e-16 to the west of the input point the multiplier has radius 1.329970173958942893e+00 and angle 0.150434052944417735 (in turns)
The angle 8388607/25165824 or 01010101010101010101010p01 has preperiod = 23 and period = 2. The corresponding parameter ray lands at a Misiurewicz point of preperiod 23 and period dividing 2. Do you want to draw the ray and to shift c to the landing point? c = -0.743291890852430 +0.131240552308798 i period = 0
Myrberg-Feigenbaum point
editExamples:
- sequence of root points for periods ( period doubling cascade) and the limit point of the sequence is the Myrberg-Feigenbaum point
- sequence of root points for periods and the limit point of the sequence is the Myrberg-Feigenbaum point
Sharkovsky ordering
edit- It is the infinite sequence of positive integers ( natural numbers)
- It starts from 3 and ends in 1
- It contains infinitely many subsequences.[2]
- the number is a period of the miget ( main pseudocardioid of the midget) that appear the first time in that order
"The Sharkovski ordering :
- begins with the odd numbers >= 3 in increasing order ( n is increasing from left to right ),
- then twice these numbers,
- then 4 times them,
- then 8 times them,
- etc.,
- ending with the powers of 2 in decreasing order, ending with 2^0 = 1."[3]
It is related with structure of the real slice of the Mandelbrot set ( along real exis):
- chaotic region, which consist of chaotic bands :
- MF = Myrberg-Feigenbaum point
- periodic region P with period doubling cascade = 2^n
Period doubling scenario
edit-
Pariod doubling cascade in the Mandelbrot set ( 1/2 family) showed by the exponential mapping
-
escape route 1/2
-
period doubling
sequence of fraction in the elephant valley
editIn the elephant valley[4][5] ( from parameter plane ) there is a sequence of componts with period p : from 1/2 to 1/p
Note that :
- internal ray 0/1 = 1/1
- internal angle 1/p means that ray goes from period 1 component ( parent period = 1) to period p component ( child period = p)
- as child period grows computations are harder
- exponential growth[6] of . One can easly create a numeric value that is too large to be represented within the available storage space ( integer overflow[7] ). For example is to big for short ( 16 bit ) and long ( 32 bit) integer.
The upper principal sequence of rotational number around the main cardioid of Mandelbrot set[8]
n | rotation number = 1/n | parameter c |
---|---|---|
2 | 1/2 | -0.75 |
3 | 1/3 | 0.64951905283833*i-0.125 |
4 | 1/4 | 0.5*i+0.25 |
5 | 1/5 | 0.32858194507446*i+0.35676274578121 |
6 | 1/6 | 0.21650635094611*i+0.375 |
7 | 1/7 | 0.14718376318856*i+0.36737513441845 |
8 | 1/8 | 0.10355339059327*i+0.35355339059327 |
9 | 1/9 | 0.075191866590218*i+0.33961017714276 |
10 | 1/10 | 0.056128497072448*i+0.32725424859374 |
See :
- Slide show of rescaled limbs converging to the Lavaurs elephant - video by Wolf Jung made with Mandel
sequence of parabolic points on the boundary of main cardioid
editHere:
- t = internal angle ( or rotation number) of main cardioid
- q = number of the critical orbit (star) arms. It means that one have to do q iterations around fixed point to move one point toward fixed point along arm.
- c is a root point between hyperbolic components of period 1 ( = main cardioid) and period q. This point is at the end ( radius = 1) of internal ray for angle t
k = log10(q) | (double) t | ||
---|---|---|---|
1 | 3/10 | 0.3 | +0.047745751406263+0.622474571220695 i |
2 | 33/100 | 0.33 | -0.106920138306109 +0.649235321397436 i |
3 | 333/1000 | 0.333 | -0.123186752260805 +0.649516204880454 i |
4 | 3333/10000 | 0.3333 | -0.124818625550005 +0.649519024348384 i |
5 | 33333/100000 | 0.33333 | -0.124981862061192 +0.649519052553419 i |
6 | 333333/1000000 | 0.333333 | -0.124998186201184 +0.649519052835480 i |
7 | 3333333/10000000 | 0.3333333 | -0.124999818620069 +0.649519052838300 i |
8 | 33333333/100000000 | 0.33333333 | -0.124999981862006 +0.649519052838329 i |
9 | 333333333/1000000000 | 0.333333333 | -0.124999998186201 +0.649519052838329 i |
10 | 3333333333/10000000000 | 0.3333333333 | -0.124999999818620 +0.649519052838329 i |
sequence from Siegel disk to Leau-Fatou flower
edit- plain Siegel disk
- digitated Siegel disk[9]
- virtual Siegel disk
- ? Leau-Fatou flower ?
1 over 2
edit-
Infolding Siegel Disk for c near internal angle t=1/2 on the boundary of main cardioid of Mandelbrot set
1 over 3
edit
n | t | ||
---|---|---|---|
0 | 0.2763932022500210 | +0.1538380639536641 + 0.5745454151066985 i | |
1 | 0.3231874668087892 | -0.0703924965263780 + 0.6469145331346999 i | |
2 | 0.3322326933513446 | -0.1190170769366243 + 0.6494880316361160 i | |
3 | 0.3332223278292314 | -0.1243960357918422 + 0.6495187369145560 i | |
4 | 0.3333222232791965 | -0.1249395463818515 + 0.6495190496732967 i | |
5 | 0.3333322222327929 | -0.1249939540657307 + 0.6495190528066729 i | |
6 | 0.3333332222223279 | -0.1249993954008480 + 0.6495190528380124 i | |
7 | 0.3333333222222233 | -0.1249999395400276 + 0.6495190528383258 i | |
8 | 0.3333333322222222 | -0.1249999939540022 + 0.6495190528383290 i | |
9 | 0.3333333332222223 | -0.1249999993954002 + 0.6495190528383290 i | |
10 | 0.3333333333222222 | -0.1249999999395400 + 0.6495190528383290 i | |
11 | 0.3333333333322222 | -0.1249999999939540 + 0.6495190528383290 i |
sequence of fractions tending to the golden mean ( Golden Ratio Conjugate )
editn = 1 ; p_n/q_n = 1.0000000000000000000 = 1 / 1 n = 2 ; p_n/q_n = 0.5000000000000000000 = 1 / 2 n = 3 ; p_n/q_n = 0.6666666666666666667 = 2 / 3 n = 4 ; p_n/q_n = 0.6000000000000000000 = 3 / 5 n = 5 ; p_n/q_n = 0.6250000000000000000 = 5 / 8 n = 6 ; p_n/q_n = 0.6153846153846153846 = 8 / 13 n = 7 ; p_n/q_n = 0.6190476190476190476 = 13 / 21 n = 8 ; p_n/q_n = 0.6176470588235294118 = 21 / 34 n = 9 ; p_n/q_n = 0.6181818181818181818 = 34 / 55 n = 10 ; p_n/q_n = 0.6179775280898876404 = 55 / 89 n = 11 ; p_n/q_n = 0.6180555555555555556 = 89 / 144 n = 12 ; p_n/q_n = 0.6180257510729613734 = 144 / 233 n = 13 ; p_n/q_n = 0.6180371352785145888 = 233 / 377 n = 14 ; p_n/q_n = 0.6180327868852459016 = 377 / 610 n = 15 ; p_n/q_n = 0.6180344478216818642 = 610 / 987 n = 16 ; p_n/q_n = 0.6180338134001252348 = 987 / 1597 n = 17 ; p_n/q_n = 0.6180340557275541796 = 1597 / 2584 n = 18 ; p_n/q_n = 0.6180339631667065295 = 2584 / 4181 n = 19 ; p_n/q_n = 0.6180339985218033999 = 4181 / 6765 n = 20 ; p_n/q_n = 0.6180339850173579390 = 6765 / 10946 n = 21 ; p_n/q_n = 0.6180339901755970865 = 10946 / 17711 n = 22 ; p_n/q_n = 0.6180339882053250515 = 17711 / 28657 n = 23 ; p_n/q_n = 0.6180339889579020014 = 28657 / 46368 n = 24 ; p_n/q_n = 0.6180339886704431856 = 46368 / 75025 n = 25 ; p_n/q_n = 0.6180339887802426829 = 75025 / 121393 n = 26 ; p_n/q_n = 0.6180339887383030068 = 121393 / 196418 n = 27 ; p_n/q_n = 0.6180339887543225376 = 196418 / 317811 n = 28 ; p_n/q_n = 0.6180339887482036214 = 317811 / 514229 n = 29 ; p_n/q_n = 0.6180339887505408394 = 514229 / 832040 n = 30 ; p_n/q_n = 0.6180339887496481015 = 832040 / 1346269 n = 31 ; p_n/q_n = 0.6180339887499890970 = 1346269 / 2178309 n = 32 ; p_n/q_n = 0.6180339887498588484 = 2178309 / 3524578 n = 33 ; p_n/q_n = 0.6180339887499085989 = 3524578 / 5702887 n = 34 ; p_n/q_n = 0.6180339887498895959 = 5702887 / 9227465 n = 35 ; p_n/q_n = 0.6180339887498968544 = 9227465 / 14930352 n = 36 ; p_n/q_n = 0.6180339887498940819 = 14930352 / 24157817 n = 37 ; p_n/q_n = 0.6180339887498951409 = 24157817 / 39088169 n = 38 ; p_n/q_n = 0.6180339887498947364 = 39088169 / 63245986 n = 39 ; p_n/q_n = 0.6180339887498948909 = 63245986 / 102334155 n = 40 ; p_n/q_n = 0.6180339887498948319 = 102334155 / 165580141 n = 41 ; p_n/q_n = 0.6180339887498948544 = 165580141 / 267914296 n = 42 ; p_n/q_n = 0.6180339887498948458 = 267914296 / 433494437 n = 43 ; p_n/q_n = 0.6180339887498948491 = 433494437 / 701408733 n = 44 ; p_n/q_n = 0.6180339887498948479 = 701408733 / 1134903170 n = 45 ; p_n/q_n = 0.6180339887498948483 = 1134903170 / 1836311903
This is a sequence of rational numbers ( Julia sets are parabolic). It's limit is an irrational number ( Julia set has a Siegel disk).
Sequence on the dynamic plane
editMore
edit- orbit
References
edit- ↑ Finding parents in the Farey tree by Claude Heiland-Allen
- ↑ Sharkovskii's theorem in wikipedia
- ↑ The On-Line Encyclopedia of Integer Sequences : A005408 = The odd numbers: a(n) = 2n+1
- ↑ muency : elephant valley
- ↑ Visual Guide To Patterns In The Mandelbrot Set by Miqel
- ↑ integer number in wikipedia
- ↑ Integer overflow in wikipedia
- ↑ Mandel Set Combinatorics : Principal Series
- ↑ scholarpedia : Siegel_disks , Quadratic_Siegel_disks, Digitation