Fractals/Mathematics/sequences
Difference between sequences, orders and seriesEdit
types of sequencesEdit
Integer sequencesEdit
Fraction sequencesEdit
Farey sequenceEdit
The Farey sequence of order n is the sequence of completely reduced vulgar fractions between 0 and 1 which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.

Each Farey sequence starts with the value 0, denoted by the fraction 0⁄1, and ends with the value 1, denoted by the fraction 1⁄1 (although some authors omit these terms).
Farey Addition = the mediant of two fractions :
Terms
- next term = child
- Previous terms = parents[1]
Farey tree = Farey sequence as a tree
Sorted |
---|
F1 = {0/1, 1/1} F2 = {0/1, 1/2, 1/1} F3 = {0/1, 1/3, 1/2, 2/3, 1/1} F4 = {0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1} F5 = {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1} F6 = {0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1} F7 = {0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1} F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1} |
See also
Sequences and orders on the parameter planeEdit
Sequences of Misiurewicz pointsEdit
- external ray for angle 1/(4*2^n) land on the tip of the first branch: 1/4, 1/8, 1/16, 1/32, 1/64, ...
- 1/(6*2^n) - land on the second branch
- principal Misiurewicz point of wake p/q
- primary_separators
nEdit
-
cubic
take the Misiurewicz point for and increase n ( proposed by Owen Maresh)
The constant (parameter c) for the quadratic (n=2) , cubic ( n=3), and quartic (n=4) polynomials are:
- (-0.7432918908524301520519705530861564778806 ,0.1312405523087976002753516038253522297699);
- -0.0649150006787816892861875745218343125883 , 0.76821968591243610206311097043854440463 );
- (-0.593611822136354943067129147813253628530 ,0.5405019391915187246754930586066158919613 );
Sharkovsky orderingEdit
- It is the infinite sequence of positive integers ( natural numbers)
- It starts from 3 and ends in 1
- It contains infinitely many subsequences.[2]
- the number is a period of the miget ( main pseudocardioid of the midget) that appear the first time in that order
"The Sharkovski ordering :
- begins with the odd numbers >= 3 in increasing order ( n is increasing from left to right ),
- then twice these numbers,
- then 4 times them,
- then 8 times them,
- etc.,
- ending with the powers of 2 in decreasing order, ending with 2^0 = 1."[3]
It is related with structure of the real slice of the Mandelbrot set ( along real exis):
- chaotic region, which consist of chaotic bands :
- MF = Myrberg-Feigenbaum point
- periodic region ( period doubling cascade = 2^n )
Period doubling scenarioEdit
-
Pariod doubling cascade in the Mandelbrot set ( 1/2 family) showed by the exponential mapping
-
escape route 1/2
-
period doubling
-
sequence of fraction in the elephant valleyEdit
In the elephant valley[4][5] ( from parameter plane ) there is a sequence of componts with period p : from 1/2 to 1/p
Note that :
- internal ray 0/1 = 1/1
- internal angle 1/p means that ray goes from period 1 component ( parent period = 1) to period p component ( child period = p)
- as child period grows computations are harder
- exponential growth[6] of . One can easly create a numeric value that is too large to be represented within the available storage space ( integer overflow[7] ). For example is to big for short ( 16 bit ) and long ( 32 bit) integer.
The upper principal sequence of rotational number around the main cardioid of Mandelbrot set[8]
n | rotation number = 1/n | parameter c |
---|---|---|
2 | 1/2 | -0.75 |
3 | 1/3 | 0.64951905283833*i-0.125 |
4 | 1/4 | 0.5*i+0.25 |
5 | 1/5 | 0.32858194507446*i+0.35676274578121 |
6 | 1/6 | 0.21650635094611*i+0.375 |
7 | 1/7 | 0.14718376318856*i+0.36737513441845 |
8 | 1/8 | 0.10355339059327*i+0.35355339059327 |
9 | 1/9 | 0.075191866590218*i+0.33961017714276 |
10 | 1/10 | 0.056128497072448*i+0.32725424859374 |
See :
- Slide show of rescaled limbs converging to the Lavaurs elephant - video by Wolf Jung made with Mandel
sequence of parabolic points on the boundary of main cardioidEdit
Here:
- t = internal angle ( or rotation number) of main cardioid
- q = number of the critical orbit (star) arms. It means that one have to do q iterations around fixed point to move one point toward fixed point along arm.
- c is a root point between hyperbolic components of period 1 ( = main cardioid) and period q. This point is at the end ( radius = 1) of internal ray for angle t
k = log10(q) | (double) t | ||
---|---|---|---|
1 | 3/10 | 0.3 | +0.047745751406263+0.622474571220695 i |
2 | 33/100 | 0.33 | -0.106920138306109 +0.649235321397436 i |
3 | 333/1000 | 0.333 | -0.123186752260805 +0.649516204880454 i |
4 | 3333/10000 | 0.3333 | -0.124818625550005 +0.649519024348384 i |
5 | 33333/100000 | 0.33333 | -0.124981862061192 +0.649519052553419 i |
6 | 333333/1000000 | 0.333333 | -0.124998186201184 +0.649519052835480 i |
7 | 3333333/10000000 | 0.3333333 | -0.124999818620069 +0.649519052838300 i |
8 | 33333333/100000000 | 0.33333333 | -0.124999981862006 +0.649519052838329 i |
9 | 333333333/1000000000 | 0.333333333 | -0.124999998186201 +0.649519052838329 i |
10 | 3333333333/10000000000 | 0.3333333333 | -0.124999999818620 +0.649519052838329 i |
sequence from Siegel disk to Leau-Fatou flowerEdit
- plain Siegel disk
- digitated Siegel disk[9]
- virtual Siegel disk
- ? Leau-Fatou flower ?
1 over 2Edit
-
Infolding Siegel Disk for c near internal angle t=1/2 on the boundary of main cardioid of Mandelbrot set
-
1 over 3Edit
n | t | ||
---|---|---|---|
0 | 0.2763932022500210 | +0.1538380639536641 + 0.5745454151066985 i | |
1 | 0.3231874668087892 | -0.0703924965263780 + 0.6469145331346999 i | |
2 | 0.3322326933513446 | -0.1190170769366243 + 0.6494880316361160 i | |
3 | 0.3332223278292314 | -0.1243960357918422 + 0.6495187369145560 i | |
4 | 0.3333222232791965 | -0.1249395463818515 + 0.6495190496732967 i | |
5 | 0.3333322222327929 | -0.1249939540657307 + 0.6495190528066729 i | |
6 | 0.3333332222223279 | -0.1249993954008480 + 0.6495190528380124 i | |
7 | 0.3333333222222233 | -0.1249999395400276 + 0.6495190528383258 i | |
8 | 0.3333333322222222 | -0.1249999939540022 + 0.6495190528383290 i | |
9 | 0.3333333332222223 | -0.1249999993954002 + 0.6495190528383290 i | |
10 | 0.3333333333222222 | -0.1249999999395400 + 0.6495190528383290 i | |
11 | 0.3333333333322222 | -0.1249999999939540 + 0.6495190528383290 i |
sequence of fractions tending to the golden mean ( Golden Ratio Conjugate )Edit
n = 1 ; p_n/q_n = 1.0000000000000000000 = 1 / 1 n = 2 ; p_n/q_n = 0.5000000000000000000 = 1 / 2 n = 3 ; p_n/q_n = 0.6666666666666666667 = 2 / 3 n = 4 ; p_n/q_n = 0.6000000000000000000 = 3 / 5 n = 5 ; p_n/q_n = 0.6250000000000000000 = 5 / 8 n = 6 ; p_n/q_n = 0.6153846153846153846 = 8 / 13 n = 7 ; p_n/q_n = 0.6190476190476190476 = 13 / 21 n = 8 ; p_n/q_n = 0.6176470588235294118 = 21 / 34 n = 9 ; p_n/q_n = 0.6181818181818181818 = 34 / 55 n = 10 ; p_n/q_n = 0.6179775280898876404 = 55 / 89 n = 11 ; p_n/q_n = 0.6180555555555555556 = 89 / 144 n = 12 ; p_n/q_n = 0.6180257510729613734 = 144 / 233 n = 13 ; p_n/q_n = 0.6180371352785145888 = 233 / 377 n = 14 ; p_n/q_n = 0.6180327868852459016 = 377 / 610 n = 15 ; p_n/q_n = 0.6180344478216818642 = 610 / 987 n = 16 ; p_n/q_n = 0.6180338134001252348 = 987 / 1597 n = 17 ; p_n/q_n = 0.6180340557275541796 = 1597 / 2584 n = 18 ; p_n/q_n = 0.6180339631667065295 = 2584 / 4181 n = 19 ; p_n/q_n = 0.6180339985218033999 = 4181 / 6765 n = 20 ; p_n/q_n = 0.6180339850173579390 = 6765 / 10946 n = 21 ; p_n/q_n = 0.6180339901755970865 = 10946 / 17711 n = 22 ; p_n/q_n = 0.6180339882053250515 = 17711 / 28657 n = 23 ; p_n/q_n = 0.6180339889579020014 = 28657 / 46368 n = 24 ; p_n/q_n = 0.6180339886704431856 = 46368 / 75025 n = 25 ; p_n/q_n = 0.6180339887802426829 = 75025 / 121393 n = 26 ; p_n/q_n = 0.6180339887383030068 = 121393 / 196418 n = 27 ; p_n/q_n = 0.6180339887543225376 = 196418 / 317811 n = 28 ; p_n/q_n = 0.6180339887482036214 = 317811 / 514229 n = 29 ; p_n/q_n = 0.6180339887505408394 = 514229 / 832040 n = 30 ; p_n/q_n = 0.6180339887496481015 = 832040 / 1346269 n = 31 ; p_n/q_n = 0.6180339887499890970 = 1346269 / 2178309 n = 32 ; p_n/q_n = 0.6180339887498588484 = 2178309 / 3524578 n = 33 ; p_n/q_n = 0.6180339887499085989 = 3524578 / 5702887 n = 34 ; p_n/q_n = 0.6180339887498895959 = 5702887 / 9227465 n = 35 ; p_n/q_n = 0.6180339887498968544 = 9227465 / 14930352 n = 36 ; p_n/q_n = 0.6180339887498940819 = 14930352 / 24157817 n = 37 ; p_n/q_n = 0.6180339887498951409 = 24157817 / 39088169 n = 38 ; p_n/q_n = 0.6180339887498947364 = 39088169 / 63245986 n = 39 ; p_n/q_n = 0.6180339887498948909 = 63245986 / 102334155 n = 40 ; p_n/q_n = 0.6180339887498948319 = 102334155 / 165580141 n = 41 ; p_n/q_n = 0.6180339887498948544 = 165580141 / 267914296 n = 42 ; p_n/q_n = 0.6180339887498948458 = 267914296 / 433494437 n = 43 ; p_n/q_n = 0.6180339887498948491 = 433494437 / 701408733 n = 44 ; p_n/q_n = 0.6180339887498948479 = 701408733 / 1134903170 n = 45 ; p_n/q_n = 0.6180339887498948483 = 1134903170 / 1836311903
This is a sequence of rational numbers ( Julia sets are parabolic). It's limit is an irrational number ( Julia set has a Siegel disk).
Sequence on the dynamic planeEdit
MoreEdit
- orbit
ReferencesEdit
- ↑ Finding parents in the Farey tree by Claude Heiland-Allen
- ↑ Sharkovskii's theorem in wikipedia
- ↑ The On-Line Encyclopedia of Integer Sequences : A005408 = The odd numbers: a(n) = 2n+1
- ↑ muency : elephant valley
- ↑ Visual Guide To Patterns In The Mandelbrot Set by Miqel
- ↑ integer number in wikipedia
- ↑ Integer overflow in wikipedia
- ↑ Mandel Set Combinatorics : Principal Series
- ↑ scholarpedia : Siegel_disks , Quadratic_Siegel_disks, Digitation