# introduction

## key words definitions

Parts of the parameter plane

• shrub
• wake
• limb
• Misiurewicz point
• tip (point) = end point = branch tip = the tip of the spoke = terminal point of the branche[1] = tip of the midget[2] "A point in the Mandelbrot Set that is at the end of a filament (as opposed to a branch point); a point from which there is only one path to other points in the Mandelbrot Set."
• The first tip = ftip = tip (end point) of the first and longest branch ( first when counting from the left to right)
• the last tip = ltip = ( last when counting from the left to right)
• number

## notation

• find Misiurewicz point
• preperiod and period
• c value
• find angles of external ray that land on it

# algorithms

## Pastor

 "the external argument can be calculated as the limit of the arguments of the structural components of the branches 1, 11, 111,..., with periods 4, 5, 6,..., that is, the limit of .(0011), .(00111), .(001111),..., or the limit of .(0100), .(01000), .(010000), .... Hence, ftip(1/3) = .00(1) = .01(0), that are two equal values. " [3]


## Claude

Method by Claude

Steps of the algorithm:

• find angles of the wake
• find angles of principal Misiurewicz point M
• find angles of spoke's tips using: "The tip of each spoke is the longest matching prefix of neighbouring angles, with 1 appended"

### 1/3

3 angles landing on M:

  0.001(010)
0.001(100)
0.010(001)


The tip of each spoke is the longest matching prefix of neighbouring angles, with 1 appended

  0.001(010) // 9/56 = 0.160(714285)
0.0011    // ltip = 3/16 = 0.1875
0.001(100) // 11/56 = 0.196(428571)
0.01  // ftip = 1/4 = 0.25
0.010(001) // 15/56 = 0.267(857142)


Check with program Mandel :

The angle  3/16  or  0011 has  preperiod = 4  and  period = 1. Entropy: e^h = 2^B = λ = 1.59898328
The corresponding parameter ray lands at a Misiurewicz point of preperiod 4 and period dividing 1.
Do you want to draw the ray and to shift c to the landing point?

 c = -0.017187977338350  +1.037652343793215 i    period = 0

The angle  1/4  or  01 has  preperiod = 2  and  period = 1.
Entropy: e^h = 2^B = λ = 1.69562077
The corresponding parameter ray lands at a Misiurewicz point of preperiod 2 and period dividing 1.
Do you want to draw the ray and to shift c to the landing point?

 M_{2,1) = c = -0.228155493653962  +1.115142508039937 i


The angle  1/6  or  0p01 has  preperiod = 1  and  period = 2.
The corresponding parameter ray lands at a Misiurewicz point of preperiod 1 and period dividing 2.
Do you want to draw the ray and to shift c to the landing point?

 c = -0.000000000000000  +1.000000000000000 i    period = 10000


# examples

## 1/2

  ${\displaystyle {\begin{cases}0.(s_{-})=0.(01)={\frac {1}{3}}=0.(3)=wake\\0.s_{-}(s_{+})=0.01(10)={\frac {5}{12}}=0.41(6)=PrincipalMis=M_{2,2}\\0.01={\frac {1}{2}}=0.5=tip=M_{1,1}=c=-2\\0.s_{+}(s_{-})=0.10(01)={\frac {7}{12}}=0.58(3)=PrincipalMis=M_{2,2}\\0.(s_{+})=0.(10)={\frac {2}{3}}=0.(6)=wake\\\end{cases}}}$


## 1/3

${\displaystyle {\begin{cases}0.(001)_{2}={\frac {1}{7}}=0.(142857)_{10}=wake\\0.001(010)_{2}={\frac {9}{56}}=0.160(714285)=principleM\\0.001(100)_{2}={\frac {11}{56}}=0.196(428571)=principleM\\0.01_{2}={\frac {1}{4}}=0.25=ftip\\0.010(001)_{2}={\frac {15}{56}}=0.267(857142)=principleM\\0.(010)_{2}={\frac {2}{7}}=0.(285714)=wake\\\end{cases}}}$


Tips

• ftip = M_{2,1} = 0.01(0) = 1/4 = c = -0.228155493653962 +1.115142508039937 i
• ltip ??? (ToDo)
• ${\displaystyle 0.0(01)={\frac {1}{6}}=0.1(6)_{10}=M_{2,1}=c=i}$
• ${\displaystyle 0.0011(0)_{2}={\frac {3}{16}}=0.1875=M_{4,1}}$
The angle  1/4  or  01 has  preperiod = 2  and  period = 1.
Entropy: e^h = 2^B = λ = 1.69562077
The corresponding parameter ray lands at a Misiurewicz point of preperiod 2 and period dividing 1.
Do you want to draw the ray and to shift c to the landing point?
c = -0.228155493653962  +1.115142508039937 i

The angle  1/4  or  01 has  preperiod = 2  and  period = 1.
The corresponding dynamic ray lands at a preperiodic point of preperiod 2 and period dividing 1.
Do you want to draw the ray and to shift z to the landing point?
z = -0.228155493653962  +1.115142508039937 i

The angle  4/7  or  p100 has  preperiod = 0  and  period = 3.
The dynamic ray lands at a repelling or parabolic point of period dividing 3.
Do you want to draw the ray and to shift z to the landing point?
z = -0.419643377607081  +0.606290729207199 i

The angle  1/8  or  001 has  preperiod = 3  and  period = 1.
The corresponding dynamic ray lands at a preperiodic point of preperiod 3 and period dividing 1.
Do you want to draw the ray and to shift z to the landing point?
z = 0.000000000159395  +0.000000000076028 i

The angle  3/16  or  0011 has  preperiod = 4  and  period = 1.
Entropy: e^h = 2^B = λ = 1.59898328
The corresponding parameter ray lands at a Misiurewicz point of preperiod 4 and period dividing 1.
Do you want to draw the ray and to shift c to the landing point?
c = -0.017187977338350  +1.037652343793215 i    period = 0

The angle  1/6  or  0p01 has  preperiod = 1  and  period = 2.
The corresponding parameter ray lands at a Misiurewicz point of preperiod 1 and period dividing 2.
Do you want to draw the ray and to shift c to the landing point?
c = -0.000000000000000  +1.000000000000000 i    period = 10000



## 1/5

• c = 0.444556879255044 +0.409933108300984 i period = 0 // landing of 1/16

## 2/5

• c = -0.636754346582390 +0.685031297083677 i period = 0 // landing of 5/16

## 12/25

• wake 12/25 of the main cardioid is bounded by the parameter rays with the angles
• 11184809/33554431 or p0101010101010101010101001 = 0.(0101010101010101010101001)
• 11184810/33554431 or p0101010101010101010101010

m-exray-out 100 -0.7432918908524301 0.1312405523087976  8 1000 24 4


result :

.010101010101010101010100(1010)


which is

.01010101010101010101010(01)