Fractals/Iterations in the complex plane/wake

How to find the angles of external rays that land on the p/q root point on the boundary of Mandelbrot set's main cardioid ?


ImagesEdit


irreducible fractionEdit

First check of p/q is irreducible

/* 
gcc i.c -Wall
./a.out
*/
#include <stdio.h>

/*
https://stackoverflow.com/questions/19738919/gcd-function-for-c
The GCD function uses Euclid's Algorithm. 
It computes A mod B, then swaps A and B with an XOR swap.
*/
int gcd(int a, int b)
{
    int temp;
    while (b != 0)
    {
        temp = a % b;

        a = b;
        b = temp;
    }
    return a;
}

int main (){

	// internal angle = n/m  in turns
	int n;  // numerator
	int d;  // denominator

 	int dMax = 17;  
 
 	for (d = 2; d <= dMax; ++d )
   		for (n = 1; n < d; ++n )
     			if (gcd(n,d)==1 ){ 
     				     			
         			printf("n/d = %d/%d\n", n,d);	// irreducible fraction  
       			} 
   
	return 0;       
}

Output:

n/d = 1/2
n/d = 1/3
n/d = 2/3
n/d = 1/4
n/d = 3/4
n/d = 1/5
n/d = 2/5
n/d = 3/5
n/d = 4/5
n/d = 1/6
n/d = 5/6
n/d = 1/7
n/d = 2/7
n/d = 3/7
n/d = 4/7
n/d = 5/7
n/d = 6/7
n/d = 1/8
n/d = 3/8
n/d = 5/8
n/d = 7/8
n/d = 1/9
n/d = 2/9
n/d = 4/9
n/d = 5/9
n/d = 7/9
n/d = 8/9
n/d = 1/10
n/d = 3/10
n/d = 7/10
n/d = 9/10
n/d = 1/11
n/d = 2/11
n/d = 3/11
n/d = 4/11
n/d = 5/11
n/d = 6/11
n/d = 7/11
n/d = 8/11
n/d = 9/11
n/d = 10/11
n/d = 1/12
n/d = 5/12
n/d = 7/12
n/d = 11/12
n/d = 1/13
n/d = 2/13
n/d = 3/13
n/d = 4/13
n/d = 5/13
n/d = 6/13
n/d = 7/13
n/d = 8/13
n/d = 9/13
n/d = 10/13
n/d = 11/13
n/d = 12/13
n/d = 1/14
n/d = 3/14
n/d = 5/14
n/d = 9/14
n/d = 11/14
n/d = 13/14
n/d = 1/15
n/d = 2/15
n/d = 4/15
n/d = 7/15
n/d = 8/15
n/d = 11/15
n/d = 13/15
n/d = 14/15
n/d = 1/16
n/d = 3/16
n/d = 5/16
n/d = 7/16
n/d = 9/16
n/d = 11/16
n/d = 13/16
n/d = 15/16
n/d = 1/17
n/d = 2/17
n/d = 3/17
n/d = 4/17
n/d = 5/17
n/d = 6/17
n/d = 7/17
n/d = 8/17
n/d = 9/17
n/d = 10/17
n/d = 11/17
n/d = 12/17
n/d = 13/17
n/d = 14/17
n/d = 15/17
n/d = 16/17


Wake and limbEdit

Wake is the region of parameter plane enclosed by two external rays landing on the same root point on the boundary of main cardioid (period 1 hyperbolic component).

p/q-limb is a part of Mandelbrot set contained inside p/q-wake

Limb:

  • start from from the root point
  • end with tip point


External angles of p/q-wake:

  • have period q under doubling map. It is the same as period of it's landing point ( c = root point ) and parent hyperbolic component
  • length of periodic part of binary expansion is q
  • preperiod under doubling map is zero

Points of of p/q-wake:

  • Roots are landing points of parameter rays with periodic angles
  • Misiurewicz points have preperiodic external angles


The size of the p/q limb[1] is  

The p/q bulb can be recognized by locating the smallest spoke ( branch) in the antenna and determining its relative location to the main spoke.

Combinatorial algorithm = Devaney's methodEdit

Devaney's method[2] for finding external angles of primary buds[3][4]

Steps :

Input : rational rotation angle

Outpout : external angle ( decimal or binary fraction )

The codeEdit

C++Edit

Here is C++ code from the program Mandel by Wolf Jung :

// mndcombi.cpp  by Wolf Jung (C) 2007-2015, part of Mandel 5.13, 
qulonglong mndAngle::wake(int k, int r, qulonglong &n)
{  if (k <= 0 || k >= r || r > 64) return 0LL;
   qulonglong d = 1LL; 
   int j, s = 0; 
   n = 1LL;

   for (j = 1; j < r; j++)
   {  s -= k; if (s < 0) s += r; if (!s) return 0LL;
      if (s > r - k) n += d << j;
   }
   //
   d <<= (r - 1); d--; d <<= 1; d++; //2^r - 1 for r <= 64
   return d;
}

C GMP and MPFREdit

/*

------- Git -----------------
cd existing_folder
git init
git remote add origin git@gitlab.com:adammajewski/wake_gmp.git
git add .
git commit -m ""
git push -u origin master
-------------------------------

?? http://stackoverflow.com/questions/2380415/how-to-cut-a-mpz-t-into-two-parts-using-gmp-lib-on-c

   
   to compile from console:
   gcc w.c -lgmp -lmpfr -Wall

    to run from console :

   ./a.out

   tested on Ubuntu 14.04 LTS

uiIADenominator = 89 
Using MPFR-3.1.2-p3 with GMP-5.1.3 with precision = 200 bits 
internal angle = 34/89
first external angle : 
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111 = 179622968672387565806504265 /( 2^89 - 1) 
External Angle as a floating point decimal number =  2.9019655713870868535821260055542440298749779423213948304299730531995503353103626302473331181359966368582651105245850405837027542373052381532777325121338632071561064451614697645709384232759475708007812e-1
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)

                                                             .(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)

*/

#include <stdlib.h> // malloc
#include <stdio.h>
#include <gmp.h>  // for rational numbers 
#include <mpfr.h> // for floating point mumbers

 // rotation map 
//the number  n  is always increased by n0 modulo d

// input :  op = n/d ( rational number ) and n0 ( integer)
//  n = (n + n0 ) % d
// d = d
// output = rop = n/d
void mpq_rotation(mpq_t rop, const mpq_t op, const mpz_t n0)
{
  
  mpz_t n; // numerator
  mpz_t d; // denominator
  mpz_inits( n, d, NULL);

 
  //  
  mpq_get_num (n, op); // 
  mpq_get_den (d, op);
  
 
  // n = (n + n0 ) % d
  mpz_add(n, n, n0); 
  mpz_mod( n, n, d);
  
      
  // output
  mpq_set_num(rop, n);
  mpq_set_den(rop, d);
    
  mpz_clears( n, d, NULL);

}

void mpq_wake(mpq_t rop, mpq_t op)
{
   
  // arbitrary precision variables from GMP library
   mpz_t  n0 ; // numerator of q
   mpz_t  nc;
   mpz_t  n;
   mpz_t  d ; // denominator of q
   mpz_t  m; // 2^i

   mpz_t  num ; // numerator of rop
   mpz_t  den ; // denominator of rop
   long long int i;
   unsigned long int base = 2;
   unsigned long int id;
   int cmp;

   mpz_inits(n, n0,nc,d,num,den,m, NULL);

   mpq_get_num(n0,op);
   mpq_get_den(d,op);
   id = mpz_get_ui(d);
   //  if (n <= 0 || n >= d ) error !!!! bad input
   mpz_sub(nc, d, n0); // nc = d - n0
   mpz_set(n, n0);   
   mpz_set_ui(num, 0);

   // rop  
    // num = numerator(rop)
    
   
   // denominator = den(rop) = (2^i) -1 
   mpz_ui_pow_ui(den, base, id) ;  // den = base^id
   mpz_sub_ui(den, den, 1);   // den = den-1
   
  // numerator   
     for (i=0; i<id ; i++){  
       
       mpz_set_ui(m, 0);
       cmp = mpz_cmp(n,nc);// Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, or a negative value if op1 < op2.
       if ( cmp>0 ) {
          mpz_ui_pow_ui(m, 2, id-i-1); // m = 2^(id-i   )
          mpz_add(num, num, m); // num = num + m
          if (mpz_cmp(num, den) >0) mpz_mod( num, num, den); // num = num % d ; if num==d gives 0
          //gmp_printf("s = 1");

           }
        // else gmp_printf("s = 0");
       //gmp_printf (" i = %ld internal angle = %Zd / %Zd ea = %Zd / %Zd ; m = %Zd \n", i, n, d, num, den, m);

        // n = (n + n0 ) % d = rotation 
       mpz_add(n, n, n0); 
       if (mpz_cmp(n, d)>0) mpz_mod( n, n, d);
       //
       
          
        // 
      }

    
   // rop = external angle 
   mpq_set_num(rop,num);
   mpq_set_den(rop,den);
   mpq_canonicalize (rop); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.

    
   // clear memory
   mpz_clears(n, n0, nc, d, num,den, m, NULL);

}

/*

http://stackoverflow.com/questions/9895216/remove-character-from-string-in-c

"The idea is to keep a separate read and write pointers (pr for reading and pw for writing), 
always advance the reading pointer, and advance the writing pointer only when it's not pointing to a given character."

modified

 remove first length2rmv chars and after that take only length2stay chars from input string
 output = input string 
*/
void extract_str(char* str, unsigned int length2rmv, unsigned long int length2stay) {
    // separate read and write pointers 
    char *pr = str; // read pointer
    char *pw = str; // write pointer
    int i =0; // index

    while (*pr) {
        if (i>length2rmv-1 && i <length2rmv+length2stay)
          pw += 1; // advance the writing pointer only when 
        pr += 1;  // always advance the reading pointer
        *pw = *pr;    
        i +=1;
    }
    *pw = '\0';
}

int main ()
{	

	

         // notation : 
        //number type : s = string ; q = rational ; z = integer, f = floating point
        // base : b = binary ; d = decimal

        
        char *sqdInternalAngle = "13/34";
        mpq_t qdInternalAngle;   // internal angle = rational number q = n/d
        mpz_t den;  
        unsigned long int uiIADenominator;
        
       
        mpq_t  qdExternalAngle;   // rational number q = n/d
        char  *sqbExternalAngle;
        mpfr_t  fdExternalAngle ;  // 
        char  *sfbExternalAngle; // 
        
        mp_exp_t exponent ; // holds the exponent for the result string
        mpz_t zdEANumerator;
        mpz_t zdEADenominator;
        mpfr_t EANumerator;
        mpfr_t EADenominator;
        mpfr_prec_t p = 200; // in bits , should be > denominator of internal angle

         mpfr_set_default_prec (p); // but previously initialized variables are unaffected.
        //mpfr_set_default_prec (precision);

        // init variables 
        //mpf_init(fdExternalAngle);
        mpz_inits(den, zdEANumerator,zdEADenominator, NULL);
        mpq_inits (qdExternalAngle, qdInternalAngle, NULL); //
        mpfr_inits(fdExternalAngle, EANumerator, EADenominator, NULL);

        // set variables
        mpq_set_str(qdInternalAngle, sqdInternalAngle, 10); // string is an internal angle
        mpq_canonicalize (qdInternalAngle); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
        mpq_get_den(den,qdInternalAngle); 
        uiIADenominator = mpz_get_ui(den);
        printf("uiIADenominator = %lu \n", uiIADenominator);

        if ( p < uiIADenominator) printf("increase precision !!!!\n");         
        mpfr_printf("Using MPFR-%s with GMP-%s with precision = %u bits \n", mpfr_version, gmp_version, (unsigned int) p);

        //        
        mpq_wake(qdExternalAngle, qdInternalAngle); // internal -> external

        mpq_get_num(zdEANumerator  ,qdExternalAngle);
        mpq_get_den(zdEADenominator,qdExternalAngle); 
        // conversions
        mpfr_set_z (EANumerator,   zdEANumerator,   GMP_RNDN);
        mpfr_set_z (EADenominator, zdEADenominator, GMP_RNDN);

        sqbExternalAngle = mpq_get_str (NULL, 2, qdExternalAngle); // rational number = fraction : from decimal to binary
        
        mpfr_div (fdExternalAngle, EANumerator, EADenominator, GMP_RNDN);

        sfbExternalAngle = (char*)malloc((sizeof(char) * uiIADenominator*2*4) + 3);
        // mpfr_get_str (char *str, mpfr_exp_t *expptr, int b, size_t n, mpfr_t op, mpfr_rnd_t rnd)
        if (sfbExternalAngle==NULL ) {printf("sfbExternalAngle error \n"); return 1;}
        mpfr_get_str(sfbExternalAngle, &exponent, 2,200, fdExternalAngle, GMP_RNDN);

        // print
        gmp_printf ("internal angle = %Qd\n", qdInternalAngle); // 
        printf("first external angle : \n");
        gmp_printf ("period = denominator of internal angle = %Zd\n", den); //

        gmp_printf ("external angle as a decimal fraction = %Qd = %Zd /( 2^%Zd - 1) \n", qdExternalAngle, zdEANumerator, den); // 
        printf ("External Angle as a floating point decimal number =  ");
        mpfr_out_str (stdout, 10, p, fdExternalAngle, MPFR_RNDD); putchar ('\n');
        gmp_printf ("external angle as a binary rational (string) : %s \n", sqbExternalAngle); // 
        
        printf ("external angle as a binary floating number in exponential form =0.%s*%d^%ld\n", sfbExternalAngle, 2, exponent); 
        extract_str(sfbExternalAngle,  uiIADenominator+exponent, uiIADenominator); 
        printf ("external angle as a binary floating number in periodic form =0.(%s)\n", sfbExternalAngle);

        // clear memory
        //mpf_clear(fdExternalAngle);
        mpq_clears(qdExternalAngle, qdInternalAngle, NULL);
        mpz_clears(den, zdEANumerator, zdEADenominator, NULL);
        mpfr_clears(fdExternalAngle, EANumerator, EADenominator, NULL);
        free(sfbExternalAngle);

        return 0;
}

ExamplesEdit

One can check the results with

1/2Edit

 
Mandelbrot set wake 1/2 with external rays

The 1/2-wake of the main cardioid is bounded by the parameter rays with the angles:

  • 1/3 = p01 = 0.(01)
  • 2/3 = p10 = 0.(10)


The 1/2-wake of the main cardioid is bounded by the parameter rays with the angles 1/3  or  p01  and 2/3  or  p10 .

The angle  1/3  or  p01 has  preperiod = 0  and  period = 2. 
The conjugate angle is  2/3  or  p10 . 
The kneading sequence is  A*  and the internal address is  1-2 .
The corresponding parameter rays land at the root of a satellite component of period 2. It bifurcates from period 1.


Important points

  • root point between period 1 and 2 = c = -0.75 = -3/4 = birurcation point for internal angle 1/2. Landing point of 2 external rays 1/3 and 2/3
  • center of period 2 components c = -1
  • tip of main antenna c = -2 =  . It is landing point of externa ray for angle  

1/3Edit

Orbit of rational angle 3/7 ( and position in subintervals):

 1 / 3  = 0 
 2 / 3  = 0 
 0 / 3  = 1 

so intinerary = 001

first external angle  = 001 = 1 / 7


The 1/3-wake of the main cardioid is bounded by the parameter rays with the angles

  • 1/7 = p001 = 0.(001)
  • 2/7 = p010 = 0.(010)

note that

  • 1/7 = 0.(142857)= 0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428...

but decimal expansion is not important here. Only decimal ratio and binary floating point is important

1/4Edit

The 1/4-wake of the main cardioid is bounded by the parameter rays with the angles

  • 1/15 or p0001 or  
  • 2/15 or p0010 or  

n/5Edit

There are 4 period 5 wakes:

  • 1/5
  • 2/5
  • 3/5
  • 4/5


The 1/5-wake of the main cardioid is bounded by the parameter rays with the angles :

  • 1/31 = p00001 = 0.(00001)
  • 2/31 = p00010 = 0.(00010)


The 4/5-wake of the main cardioid is bounded by the parameter rays with the angles

  • 29/31 = p11101 = 0.(11101)
  • 30/31 = p11110 = 0.(11110)

3/7Edit

 
Parabolic Julia set for internal angle 3 over 7 with 2 external rays and labelled components
 
Rotation with rational angle 3 over 7
 
wake 3/7

Divide interval ( circle):

 

into 2 subintervals ( lower partition) :

 
 

Orbit of rational angle 3/7 ( and position in subintervals):

 3 / 7  = 0 
 6 / 7  = 1 
 2 / 7  = 0 
 5 / 7  = 1 
 1 / 7  = 0 
 4 / 7  = 0 
 0 / 7  = 1 

So itinerary is :

  

One can convert it to number :

 


The 3/7-wake of the main cardioid is bounded by the parameter rays with the angles

  • 41/127 = p0101001 = 0.(0101001)
  • 42/127 = p0101010 = 0.(0101010)


root point :

 c = -0.606356884415893  +0.412399740175787 i

Orbit of 41/127 under doubling map modulo 1 computed with this program ( exponent = 7 and mpz_init_set_ui(n, 41); :

41/127
82/127
37/127
74/127
21/127
42/127
84/127

5/11Edit

 
Mandelbrot set - wake 5/11 with external rays
ghci
GHCi, version 8.10.7: https://www.haskell.org/ghc/  :? for help
Prelude> :l bh.hs
[1 of 1] Compiling Main             ( bh.hs, interpreted )
Ok, one module loaded.
*Main> :main 5 11
internal angle p/q = 5 / 11
internal angle in lowest terms = 
5 % 11
rays of the bulb:
(01010101001) = 681 % 2047
(01010101010) = 682 % 2047


The 5/11-wake of the main cardioid is bounded by the parameter rays with the angles:

  • 681/2047 = p01010101001 = 0.(01010101001)
  • 682/2047 = p01010101010 = 0.(01010101010)

Center of period 11: c = -0.697838195122425 +0.279304134101366 i root point ( bond): c = -0.690059870015044 +0.276026482784614 i




Angled internal address:  

n/17Edit

The 1/17-wake of the main cardioid is bounded by the parameter rays with the angles

  • 1/131071 = p00000000000000001 = 0.(00000000000000001)
  • 2/131071 = p00000000000000010 = .(00000000000000010)

1/25Edit

uiIADenominator = 25 
Using MPFR-3.1.5 with GMP-6.1.1 with precision = 200 bits 
internal angle = 1/25
first external angle : 
period = denominator of internal angle = 25
external angle as a decimal fraction = 1/33554431 = 1 /( 2^25 - 1) 
External Angle as a floating point decimal number =  2.9802323275873758669905622896719661257256902970579355078320375103410059138021557873907862143745145987726127630324761942815747600646073471636075786857847163330961076713939572483194617724677755177253857e-8
external angle as a binary rational (string) : 1/1111111111111111111111111 
external angle as a binary floating number in exponential form =0.10000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000001*2^-24
external angle as a binary floating number in periodic form =0.(0000000000000000000000001)

So 1/25-wake of the main cardioid is bounded by the parameter rays with the angles :

  • 0.0000000298 = 1/33554431 = 1 /( 2^25 - 1) = 0.(0000000000000000000000001)
  • 0,0000000596 = 2/33554431 = 2 /( 2^25 - 1) = 0.(0000000000000000000000010)

One can check it with Mandel

The angle  1/33554431  or  p0000000000000000000000001
has  preperiod = 0  and  period = 25.
The conjugate angle is  2/33554431  or  p0000000000000000000000010 .
The kneading sequence is  AAAAAAAAAAAAAAAAAAAAAAAA*  and
the internal address is  1-25 .
The corresponding parameter rays are landing at the root of a satellite component of period 25.
It is bifurcating from period 1.
Do you want to draw the rays and to shift c
to the corresponding center?

The center is :

 c = 0.265278321904606  +0.003712059989878 i    period = 25

1/31Edit

 
Mandelbrot set - wake 1 over 31 with external rays

The 1/31-wake of the main cardioid

  • is bounded by the parameter rays with the angles:
    • 1/2147483647 = p0000000000000000000000000000001 = 0.(0000000000000000000000000000001)
    • 2/2147483647 = p0000000000000000000000000000010 = 0.(0000000000000000000000000000010)
  • root point : c = 0.260025517721190 +0.002060296266000 i
  • center c = 0.260025517721190 +0.002060296266000 i
  • principal Misiurewicz point c = 0.259995759918769 +0.001610271381965*i
    • has preperiod = 31 , period = 1
    • is a landing point for 31 external rays
      • 2147483649/4611686016279904256 = 0000000000000000000000000000001p0000000000000000000000000000010 = .0000000000000000000000000000001(0000000000000000000000000000010)
  • the biggest baby Mandelbrot set has the kneading sequence AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB* corresponds to the internal address 1-31-32 . The period is 32. The smallest angles are 3/4294967295 = 0.(00000000000000000000000000000011) and 4/4294967295 = 0.(00000000000000000000000000000100)

On the dynamical plane :

  • The angle

13/34Edit

 
Rotation with rational angle 13/34

The 13/34-wake of the main cardioid is bounded by the parameter rays with the angles

  • 4985538889/17179869183 = p0100101001001010010100100101001001 = 0.(0100101001001010010100100101001001)
  • 4985538890/17179869183 = p0100101001001010010100100101001010 = 0.(0100101001001010010100100101001010)


 s = 0 i = 0 internal angle = 13 / 34 ea = 0 / 17179869183 ; m = 0 
s = 1 i = 1 internal angle = 26 / 34 ea = 4294967296 / 17179869183 ; m = 4294967296 
s = 0 i = 2 internal angle = 5 / 34 ea = 4294967296 / 17179869183 ; m = 0 
s = 0 i = 3 internal angle = 18 / 34 ea = 4294967296 / 17179869183 ; m = 0 
s = 1 i = 4 internal angle = 31 / 34 ea = 4831838208 / 17179869183 ; m = 536870912 
s = 0 i = 5 internal angle = 10 / 34 ea = 4831838208 / 17179869183 ; m = 0 
s = 1 i = 6 internal angle = 23 / 34 ea = 4966055936 / 17179869183 ; m = 134217728 
s = 0 i = 7 internal angle = 2 / 34 ea = 4966055936 / 17179869183 ; m = 0 
s = 0 i = 8 internal angle = 15 / 34 ea = 4966055936 / 17179869183 ; m = 0 
s = 1 i = 9 internal angle = 28 / 34 ea = 4982833152 / 17179869183 ; m = 16777216 
s = 0 i = 10 internal angle = 7 / 34 ea = 4982833152 / 17179869183 ; m = 0 
s = 0 i = 11 internal angle = 20 / 34 ea = 4982833152 / 17179869183 ; m = 0 
s = 1 i = 12 internal angle = 33 / 34 ea = 4984930304 / 17179869183 ; m = 2097152 
s = 0 i = 13 internal angle = 12 / 34 ea = 4984930304 / 17179869183 ; m = 0 
s = 1 i = 14 internal angle = 25 / 34 ea = 4985454592 / 17179869183 ; m = 524288 
s = 0 i = 15 internal angle = 4 / 34 ea = 4985454592 / 17179869183 ; m = 0 
s = 0 i = 16 internal angle = 17 / 34 ea = 4985454592 / 17179869183 ; m = 0 
s = 1 i = 17 internal angle = 30 / 34 ea = 4985520128 / 17179869183 ; m = 65536 
s = 0 i = 18 internal angle = 9 / 34 ea = 4985520128 / 17179869183 ; m = 0 
s = 1 i = 19 internal angle = 22 / 34 ea = 4985536512 / 17179869183 ; m = 16384 
s = 0 i = 20 internal angle = 1 / 34 ea = 4985536512 / 17179869183 ; m = 0 
s = 0 i = 21 internal angle = 14 / 34 ea = 4985536512 / 17179869183 ; m = 0 
s = 1 i = 22 internal angle = 27 / 34 ea = 4985538560 / 17179869183 ; m = 2048 
s = 0 i = 23 internal angle = 6 / 34 ea = 4985538560 / 17179869183 ; m = 0 
s = 0 i = 24 internal angle = 19 / 34 ea = 4985538560 / 17179869183 ; m = 0 
s = 1 i = 25 internal angle = 32 / 34 ea = 4985538816 / 17179869183 ; m = 256 
s = 0 i = 26 internal angle = 11 / 34 ea = 4985538816 / 17179869183 ; m = 0 
s = 1 i = 27 internal angle = 24 / 34 ea = 4985538880 / 17179869183 ; m = 64 
s = 0 i = 28 internal angle = 3 / 34 ea = 4985538880 / 17179869183 ; m = 0 
s = 0 i = 29 internal angle = 16 / 34 ea = 4985538880 / 17179869183 ; m = 0 
s = 1 i = 30 internal angle = 29 / 34 ea = 4985538888 / 17179869183 ; m = 8 
s = 0 i = 31 internal angle = 8 / 34 ea = 4985538888 / 17179869183 ; m = 0 
s = 0 i = 32 internal angle = 21 / 34 ea = 4985538888 / 17179869183 ; m = 0 
s = 1 i = 33 internal angle = 34 / 34 ea = 4985538889 / 17179869183 ; m = 1 
internal angle = 13/34
period = denominator of internal angle = 34
external angle as a decimal fraction = 4985538889/17179869183 = 4985538889 /( 2^34 - 1) 
external angle as a binary rational (string) : 100101001001010010100100101001001/1111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.1001010010010100101001001010010010100101001001010010100100101001*2^-1
external angle as a binary floating number in periodic form =0.(0100101001001010010100100101001)

34/89Edit

Using GMP-5.1.3 with precision = 256 bits 
internal angle = 34/89
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001001010010010100101001001010010100100101001001010010100101*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)


1/128Edit

uiIADenominator = 128 
Using MPFR-4.0.2 with GMP-6.2.0 with precision = 200 bits 
internal angle = 1/128
first external angle : 
period = denominator of internal angle = 128
external angle as a decimal fraction = 1/340282366920938463463374607431768211455 = 1 /( 2^128 - 1) 
External Angle as a floating point decimal number =  2.9387358770557187699218413430556141945553000604853132483972656175588435482079339324933425313850237034701685918031624270579715075034722882265605472939461496635969950989468319466936530037770580747746862e-39
external angle as a binary rational (string) : 1/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000*2^-127
external angle as a binary floating number in periodic form =0.(00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)

89/268Edit

 
External rays landing on the 89/268 wake

Using GMP-5.1.3 with precision = 320 bits 
internal angle = 89/268
period = denominator of internal angle = 268
external angle as a decimal fraction = 67754913930863876636420964942226524366713408170066250043659752013773168429311121/474284397516047136454946754595585670566993857190463750305618264096412179005177855
external angle as a binary rational (string) : 0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001
/1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001
001001001001001001001001001001001001001001001001001001*2^-2
external angle as a binary floating number in periodic form =
0.(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001)


G Pastor gave an example of external rays for which the resolution of the IEEE 754 is not sufficient [5]:


 

 

See alsoEdit

ReferencesEdit

  1. The Mandelbrot Set and the Farey Tree. American Mathematical Monthly 106 (1999), 289-302.
  2. The Mandelbrot Set and The Farey Tree by Robert L. Devaney
  3. External angles in the Mandelbrot set: the work of Douady and Hubbard by Douglas C. Ravenel
  4. Complex number and the Mandelbrot set by Dusa McDuff and Melkana Brakalova
  5. A Method to Solve the Limitations in Drawing External Rays of the Mandelbrot Set M. Romera,1 G. Pastor, A. B. Orue,1 A. Martin, M.-F. Danca,and F. Montoya