Fractals/Iterations in the complex plane/periodic points
How to describe a cycle ( periodic orbit)
- period
- stability of a periodic Orbit ( cycle)
- (cyclic) permutation[1]
- basin of attraction
period
editHere period means period of iterated function (map).[2]
Point z has period p under f if :
or in other notation:
The smallest positive integer p satisfying the above is called the prime period or least period of the point z.
equation and polynomial F
editSo equation for periodic points:
or in other notation
degree
editDegree d of polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients.
Degree of rational function is the higher value from the degree of numerator and denominator
In case of iterated quadratic polynomial :
How to find periodic points for given period?
editVisual check
editVisual check[3] of critical orbit helps to:
- understand dynamics
- find periodic points
-
period 1 orbit with slow dynamics
-
period 3 parabolic orbit
-
period 3 orbit
Symbolic methods
editf(z,c):=z*z+c;
fn(p, z, c) := if p=0 then z elseif p=1 then f(z,c) else f(fn(p-1, z, c),c);
Standard polynomial Fp which roots are periodic z-points of period p and its divisors
editF(p, z, c) := fn(p, z, c) - z ;
Function for computing reduced polynomial Gp which roots are periodic z-points of period p without its divisors
edit- math definition :
- Maxima function:
G[p,z,c]:= block( [f:divisors(p), t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */ f:delete(p,f), /* delete p from list of divisors */ if p=1 then return(F(p,z,c)), for i in f do t:t*G[i,z,c], g: F(p,z,c)/t, return(ratsimp(g)) )$
Finding equations for periodic points
editStandard equations
editEquation for periodic point for period is :
so in Maxima :
for i:1 thru 4 step 1 do disp(i,expand(Fn(i,z,c)=0)); 1 z^2-z+c=0 2 z^4+2*c*z^2-z+c^2+c=0 3 z^8+4*c*z^6+6*c^2*z^4+2*c*z^4+4*c^3*z^2+4*c^2*z^2-z+c^4+2*c^3+c^2+c=0 4 z^16+8*c*z^14+28*c^2*z^12+4*c*z^12+56*c^3*z^10+24*c^2*z^10+70*c^4*z^8+60*c^3*z^8+6*c^2*z^8+2*c*z^8+56*c^5*z^6+80*c^4*z^6+ 24*c^3*z^6+8*c^2*z^6+28*c^6*z^4+60*c^5*z^4+36*c^4*z^4+16*c^3*z^4+4*c^2*z^4+8*c^7*z^2+24*c^6*z^2+24*c^5*z^2+16*c^4*z^2+ 8*c^3*z^2- z+c^8+4*c^7+6*c^6+6*c^5+5*c^4+2*c^3+c^2+c=0
Degree of standard equations is
These equations give periodic points for period p and its divisors. It is because these polynomials are product of lower period polynomials :
for i:1 thru 4 step 1 do disp(i,factor(Fz(i,z,c))); 1 z^2-z+c 2 (z^2-z+c)*(z^2+z+c+1) 3 (z^2-z+c)*(z^6+z^5+3*c*z^4+z^4+2*c*z^3+z^3+3*c^2*z^2+3*c*z^2+z^2+c^2*z+2*c*z+z+c^3+2*c^2+c+1) 4 (z^2-z+c)*(z^2+z+c+1)(z^12+6*c*z^10+z^9+15*c^2*z^8+3*c*z^8+4*c*z^7+20*c^3*z^6+12*c^2*z^6+z^6+6*c^2*z^5+2*c*z^5+15*c^4*z^4+18*c^3*z^4+3* c^2*z^4+4*c*z^4+4*c^3*z^3+4*c^2*z^3+z^3+6*c^5*z^2+12*c^4*z^2+6*c^3*z^2+5*c^2*z^2+c*z^2+c^4*z+2*c^3*z+c^2*z+2*c*z+c^6+ 3*c^5+3*c^4+3*c^3+2*c^2+1)
so
Standard equations can be reduced to equations giving periodic points for period p without its divisors.
See also : prime factors in wikipedia
Reduced equations
edit
so in Maxima gives :
for i:1 thru 5 step 1 do disp(i,expand(G[i,z,c]=0)); 1 z^2-z+c=0 2 z^2+z+c+1=0 3 z^6+z^5+3*c*z^4+z^4+2*c*z^3+z^3+3*c^2*z^2+3*c*z^2+z^2+c^2*z+2*c*z+z+c^3+2*c^2+c+1=0 4 z^12+6*c*z^10+z^9+15*c^2*z^8+3*c*z^8+4*c*z^7+20*c^3*z^6+12*c^2*z^6+z^6+6*c^2*z^5+2*c*z^5+15*c^4*z^4+18*c^3*z^4+ 3*c^2*z^4+4*c*z^4+4*c^3*z^3+4*c^2*z^3+z^3+6*c^5*z^2+12*c^4*z^2+ 6*c^3*z^2+5*c^2*z^2+c*z^2+c^4*z+2*c^3*z+c^2*z+2*c*z+c^6+3*c^5+3*c^4+3*c^3+2*c^2+1=0
period | degree Fp | degree Gp |
---|---|---|
1 | 2^1 = 2 | 2 |
2 | 2^2=4 | 2 |
3 | 2^3 = 8 | 6 |
4 | 2^4 = 16 | 12 |
p | d = 2^p |
Computing periodic points
editDefinition in wikipedia [6]
Fixed points ( period = 1 )
editEquation defining fixed points :
z^2-z+c = 0
in Maxima :
Define c value
(%i1) c:%i; (%o1) %i
Compute fixed points
(%i2) p:float(rectform(solve([z*z+c=z],[z]))); (%o2) [z=0.62481053384383*%i-0.30024259022012,z=1.30024259022012-0.62481053384383*%i]
Find which is repelling :
abs(2*rhs(p[1]));
Show that sum of fixed points is 1
(%i10) p:solve([z*z+c=z], [z]); (%o10) [z=-(sqrt(1-4*%i)-1)/2,z=(sqrt(1-4*%i)+1)/2] (%i14) s:radcan(rhs(p[1]+p[2])); (%o14) 1
Draw points :
(%i15) xx:makelist (realpart(rhs(p[i])), i, 1, length(p)); (%o15) [-0.30024259022012,1.30024259022012] (%i16) yy:makelist (imagpart(rhs(p[i])), i, 1, length(p)); (%o16) [0.62481053384383,-0.62481053384383] (%i18) plot2d([discrete,xx,yy], [style, points]);
One can add point z=1/2 to the lists:
(%i31) xx:cons(1/2,xx); (%o31) [1/2,-0.30024259022012,1.30024259022012] (%i34) yy:cons(0,yy); (%o34) [0,0.62481053384383,-0.62481053384383] (%i35) plot2d([discrete,xx,yy], [style, points]);
In C :
complex double GiveFixed(complex double c){
/*
Equation defining fixed points : z^2-z+c = 0
z*2+c = z
z^2-z+c = 0
coefficients of standard form ax^2+ bx + c
a = 1 , b = -1 , c = c
The discriminant d is
d=b^2- 4ac
d = 1 - 4c
alfa = (1-sqrt(d))/2
*/
complex double d = 1-4*c;
complex double z = (1-csqrt(d))/2.0;
return z;
}
double complex GiveAlfaFixedPoint(double complex c)
{
// Equation defining fixed points : z^2-z+c = 0
// a = 1, b = -1 c = c
double dx, dy; //The discriminant is the d=b^2- 4ac = dx+dy*i
double r; // r(d)=sqrt(dx^2 + dy^2)
double sx, sy; // s = sqrt(d) = sqrt((r+dx)/2)+-sqrt((r-dx)/2)*i = sx + sy*i
double ax, ay; // alfa = ax+ay*I
// d=1-4c = dx+dy*i
dx = 1 - 4*creal(c);
dy = -4 * cimag(c);
// r(d)=sqrt(dx^2 + dy^2)
r = sqrt(dx*dx + dy*dy);
//sqrt(d) = s =sx +sy*i
sx = sqrt((r+dx)/2);
sy = sqrt((r-dx)/2);
// alfa = ax +ay*i = (1-sqrt(d))/2 = (1-sx + sy*i)/2
ax = 0.5 - sx/2.0;
ay = sy/2.0;
return ax+ay*I;
}
period 2 points
editUsing non-reduced equation in Maxima CAS :
(%i2) solve([(z*z+c)^2+c=z], [z]); (%o2) [z=-(sqrt(-4*c-3)+1)/2,z=(sqrt(-4*c-3)-1)/2,z=-(sqrt(1-4*c)-1)/2,z=(sqrt(1-4*c)+1)/2]
Show that z1+z2 = -1
(%i4) s:radcan(rhs(p[1]+p[2])); (%o4) -1
Show that z2+z3=1
(%i6) s:radcan(rhs(p[3]+p[4])); (%o6) 1
Reduced equation :
so standard coefficient names of single-variable quadratic polynomial[7]
are :
a = 1 b = 1 c = c+1
One can use the quadratic formula[8] to find the exact solution ( roots of quadratic equation):[9]
where :
Another formula[10] can be used to solve square root of complex number "
where :
so
Period 3 points
editIn Maxima CAS
kill(all); remvalue(z); f(z,c):=z*z+c; /* Complex quadratic map */ finverseplus(z,c):=sqrt(z-c); finverseminus(z,c):=-sqrt(z-c); /* */ fn(p, z, c) := if p=0 then z elseif p=1 then f(z,c) else f(fn(p-1, z, c),c); /*Standard polynomial F_p \, which roots are periodic z-points of period p and its divisors */ F(p, z, c) := fn(p, z, c) - z ; /* Function for computing reduced polynomial G_p\, which roots are periodic z-points of period p without its divisors*/ G[p,z,c]:= block( [f:divisors(p), t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */ f:delete(p,f), /* delete p from list of divisors */ if p=1 then return(F(p,z,c)), for i in f do t:t*G[i,z,c], g: F(p,z,c)/t, return(ratsimp(g)) )$ GiveRoots(g):= block( [cc:bfallroots(expand(%i*g)=0)], cc:map(rhs,cc),/* remove string "c=" */ cc:map('float,cc), return(cc) )$ compile(all); k:G[3,z,c]$ c:1; s:GiveRoots(ev(k))$ s;
Numerical methods
edit
Newton method
editfind one root
editalgorithm
editFor given ( and fixed = constant values):
- period p
- parameter c
- initial aproximation = initial value of Newton iteration
find one periodic point of complex quadratic polynomial :
where
Note that periodic point is only one of p points of periodic cycle.
To find periodic point one have to solve equation ( = find a single zero of a function F):
Lets call left side of this equation (arbitrary name) function :
Derivative of function with respect to variable z :
It can be checked using Maxima CAS:
(%i1) f:z*z+c; (%o1) z^2 + c (%i2) F:f-z; (%o2) z^2 - z + c (%i3) diff(F,z,1); (%o3) 2 z - 1
Newton iteration is :
gives sequence of points:
where:
- n is a number of Newton iteration
- p is a period ( fixed positive integer)
- is an initial aproximation of periodic point
- is a final aproximation of periodic point
- is computed using quadratic iteration with as a starting point
- is a value of first derivative . It computed using iteration
- is called Newton function. Sometimes different and shorter notation is used :
stoping criteria
edit- : predefined accuracy threshold ( succes = converged )[11]
- : maximal number of iterations ( fail to converge)
Usually one starts with :
for long double floating point number format
precision
editPrecision is proportional to the degree of polynomial F, which is proportional to the period p
so
IEEE 754 - 2008 | Common name | C++ data type | Base | Precision | Machine epsilon = |
---|---|---|---|---|---|
binary16 | half precision | short | 2 | 11 | 2−10 ≈ 9.77e-04 |
binary32 | single precision | float | 2 | 24 | 2−23 ≈ 1.19e-07 |
binary64 | double precision | double | 2 | 53 | 2−52 ≈ 2.22e-16 |
extended precision | _float80[12] | 2 | 64 | 2−63 ≈ 1.08e-19 | |
binary128 | quad(ruple) precision | _float128[12] | 2 | 113 | 2−112 ≈ 1.93e-34 |
where :
- precision = number of fraction's binary digits
- accuracy < machine epsilon
precision = -log2(accuracy)
Relation between accuracy and degree d:[13]
- accuracy = 1/d
- accuracy = 1/(2 d log d)
Compare:
- precision for computing centers with Maxima CAS
- precision for zoom
number of iterations
editcode
editc
edit/*
gcc -std=c99 -Wall -Wextra -pedantic -O3 m.c -lm
./a.out
*/
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
const double pi = 3.141592653589793;
static inline double cabs2(complex double z) {
return (creal(z) * creal(z) + cimag(z) * cimag(z));
}
/*
newton function
N(z) = z - (fp(z)-z)/fp'(z))
used for computing periodic point
of complex quadratic polynomial
f(z) = z*z +c
*/
complex double N( complex double c, complex double zn , int pMax, double er2){
complex double z = zn;
complex double d = 1.0; /* d = first derivative with respect to z */
int p;
for (p=0; p < pMax; p++){
d = 2*z*d; /* first derivative with respect to z */
z = z*z +c ; /* complex quadratic polynomial */
if (cabs(z) >er2) break;
}
z = zn - (z - zn)/(d - 1) ;
return z;
}
/*
compute periodic point
of complex quadratic polynomial
using Newton iteration = numerical method
*/
complex double GivePeriodic(complex double c, complex double z0, int period, double eps2, double er2){
complex double z = z0;
complex double zPrev = z0; // prevoiuus value of z
int n ; // iteration
const int nMax = 64;
for (n=0; n<nMax; n++) {
z = N( c, z, period, er2);
if (cabs2(z - zPrev)< eps2) break;
zPrev = z; }
return z;
}
int main() {
const double ER2 = 2.0 * 2.0; // ER*ER
const double EPS2 = 1e-100 * 1e-100; // EPS*EPS
int period = 3;
complex double c = -0.12565651+0.65720*I ; // https://commons.wikimedia.org/wiki/File:Fatou_componenets_3.png
complex double z0 = 0.0 ; // initial aproximation for Newton method; usuallly critical point
complex double zp; // periodic point
zp = GivePeriodic( c , z0, period, EPS2, ER2); //
printf (" c = %f ; %f \n", creal(c), cimag(c));
printf (" period = %d \n", period);
printf (" z0 = %f ; %f \n", creal(z0), cimag(z0));
printf (" zp = %.16f ; %.16f \n", creal(zp), cimag(zp));
return 0;
}
Maxima CAS
edit/* batch file for Maxima CAS find periodic point of iterated function solve : c0: -0.965 + 0.085*%i$ // period of critical orbit = 2 2 1 ( alfa ) repelling 2 1 ( beta) repelling [0.08997933216560844 %i - 0.972330689471866, 0.0385332450804691 %i - 0.6029437025417168, (- 0.0899793321656081 %i) - 0.02766931052813359, 1.602943702541716 - 0.03853324508046944 %i] // periodic z points [1.952970301777068, 1.208347498712429, 0.1882750218384916, attr 3.206813573935709] // stability ( 1) [0.3676955262170045, 1.460103677644584, 0.3676955262170032, attr 10.28365329797831] // stability (2) Newton : z0: 0 zn : - 0.08997933216560859 %i - 0.02766931052813337 z0: -0.86875-0.03125*%i zn: 0.08997933216560858*%i-0.9723306894718666 (%o21) (-0.08997933216560859*%i)-0.02766931052813337 (%i22) zn2:Periodic(period,c0,(-0.86875)-0.03125*%i,ER,eps) (%o22) 0.08997933216560858*%i-0.9723306894718666 */ kill(all); /* if you want to delete all variables and functions. Careful: this does not completely reset the environment to its initial state. */ remvalue(z); reset(); /* Resets many (global) system variables */ ratprint : false; /* remove "rat :replaced " */ display2d:false$ /* display in one line */ mode_declare(ER, real)$ ER: 1e100$ mode_declare(eps,real)$ eps:1e-100$ mode_declare( c0, complex)$ c0: -0.965 + 0.085*%i$ /* period of critical orbit = 2*/ mode_declare(z0, complex)$ z0:0$ mode_declare(period, integer)$ period:2$ /* ----------- functions ------------------------ */ /* https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials complex quadratic polynomial */ f(z,c):=z*z+c$ /* iterated map */ fn(p, z, c) := if p=0 then z elseif p=1 then f(z,c) else f(fn(p-1, z, c),c); Fn(p,z,c):= fn(p, z, c) - z$ /* find periodic point using solve = symbolic method */ S(p,c):= ( s: solve(Fn(p,z,c)=0,z), s: map( rhs, s), s: float(rectform(s)))$ /* newton function : N(z) = z - (fp(z)-z)/(f'(z)-1) */ N(zn, c, iMax, _ER):=block( [z, d], /* d = first derivative with respect to z */ /* mode_declare([z,zn, c,d], complex), */ d : 1+0*%i, z : zn, catch( for i:1 thru iMax step 1 do ( /* print("i =",i,", z=",z, ", d = ",d), */ d : float(rectform(2*z*d)), /* first derivative with respect to z */ z : float(rectform(z^2+c)), /* complex quadratic polynomial */ if ( cabs(z)> _ER) /* z is escaping */ then throw(z) )), /* catch(for i */ if (d!=0) /* if not : divide by 0 error */ then z:float(rectform( zn - (z - zn)/(d-1))), return(z) /* */ )$ /* compute periodic point of complex quadratic polynomial using Newton iteration = numerical method */ Periodic(p, c, z0, _ER, _eps) :=block ( [z, n, temp], /* local variables */ if (p<1) then print("to small p ") else ( n:0, z: z0, /* */ temp:0, /* print("n = ", n, "zn = ", z ), */ catch( while (1) do ( z : N(z, c, p, _ER), n:n+1, /* print("n = ", n, "zn = ", z ), */ if(cabs(temp-z)< _eps) then throw(z), temp:z, if(n>64) then throw(z) ))), /* catch(while) */ return(z) )$ compile(all)$ /* ------------------ run ---------------------------------------- */ zn1: Periodic(period, c0, z0, ER, eps); zn2 : Periodic(period, c0,-0.868750000000000-0.031250000000000*%i, ER, eps);
output:
(%i21) zn1:Periodic(period,c0,z0,ER,eps) (%o21) (-0.08997933216560859*%i)-0.02766931052813337 (%i22) zn2:Periodic(period,c0,(-0.86875)-0.03125*%i,ER,eps) (%o22) 0.08997933216560858*%i-0.9723306894718666
find all roots
editMethods:
Number:
- number of all roots = degree of polynomial ( Fundamental Theorem of Algebra )
- degree = where p is a period
period | degree | number of all roots |
---|---|---|
1 | 2^1 = 2 | 2 |
2 | 2^2=4 | 4 |
3 | 2^3 = 8 | 8 |
p | d = 2^p | d |
test
edit"Viete tests[15] on the roots found:
- if p is any polynomial of degree d and normalized (i.e. the leading coefficient is 1), then the sum of all roots of p must be equal to the negative of the coefficient of degree d − 1.
- Moreover, the product of the roots must be equal to (−1)^d times the constant coefficient. If one root vanishes, then the product of the remaining d − 1 roots is equal to (−1)^(d−1) times the linear term. "
"The sum of all roots should be 0 = the coefficient a of the degree d − 1 term of our polynomial. "[16]
The constant term is a0. Its value depends on the period (degree).
code
edit/* batch file for Maxima CAS find all periodic point of iterated function using solve */ kill(all); /* if you want to delete all variables and functions. Careful: this does not completely reset the environment to its initial state. */ remvalue(all); reset(); /* Resets many (global) system variables */ ratprint : false; /* remove "rat :replaced " */ display2d:false$ /* display in one line */ mode_declare(c0, complex)$ c0: -0.965 + 0.085*%i$ /* period of critical orbit = 2*/ mode_declare(z, complex)$ mode_declare(period, integer)$ period:2 $ /* ----------- functions ------------------------ */ /* https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials complex quadratic polynomial */ f(z,c):=z*z+c$ /* iterated map */ fn(p, z, c) := if p=0 then z elseif p=1 then f(z,c) else f(fn(p-1, z, c),c); Fn(p,z,c):= fn(p, z, c) - z$ /* find periodic point using solve = symbolic method */ S(p,c):= ( s: solve(Fn(p,z,c)=0,z), s: map( rhs, s), s: float(rectform(s)))$ /* gives a list of coefficients */ GiveCoefficients(P,x):=block ( [a, degree], P:expand(P), /* if not expanded */ degree:hipow(P,x), a:makelist(coeff(P,x,degree-i),i,0,degree)); GiveConstCoefficient(period, z, c):=( [l:[]], l : GiveCoefficients( Fn(period,z,c), z), l[length(l)] )$ /* https://en.wikipedia.org/wiki/Vieta%27s_formulas sum of all roots , here it should be zero */ VietaSum(l):=( abs(sum(l[i],i, 1, length(l))) )$ /* it should be = (-1)^d* a0 = constant coefficient of Fn */ VietaProduct(l):=( rectform(product(l[i],i, 1, length(l))) )$ compile(all); s: S(period, c0)$ vs: VietaSum(s); vp : VietaProduct(s); a0: GiveConstCoefficient( period, z,c0);
example results
editThe equation for period p=2 cycle is :
z^4+2*c*z^2-z+c^2+c = 0
so d-1 = 3 coefficient is 0
Degree d :
The four roots for c= -0.965 + 0.085*i are :
[0.08997933216560844*%i-0.972330689471866, 0.0385332450804691*%i-0.6029437025417168, (-0.0899793321656081*%i)-0.02766931052813359, 1.602943702541716-0.03853324508046944*%i]
their sum is :
their product :
So results have passed Viete's tests
How to compute stability of periodic point ?
editstability of periodic points (orbit) - multiplier
editThe multiplier (or eigenvalue, derivative) of a rational map iterated times at cyclic point is defined as:
where is the first derivative of with respect to at .
Because the multiplier is the same at all periodic points on a given orbit, it is called a multiplier of the periodic orbit.
The multiplier is:
- a complex number;
- invariant under conjugation of any rational map at its fixed point;[17]
- used to check stability of periodic (also fixed) points with stability index
A periodic point is[18]
- attracting when
- super-attracting when
- attracting but not super-attracting when
- indifferent ( neutral) when
- rationally indifferent or parabolic or weakly attractive[19] if is a root of unity;
- irrationally indifferent if but multiplier is not a root of unity;
- repelling when
Periodic points
- that are attracting are always in the Fatou set
- that are repelling are in the Julia set;
- that are indifferent fixed points may be in one or the other.[20] A parabolic periodic point is in the Julia set.
code
editc
edit/*
gcc -std=c99 -Wall -Wextra -pedantic -O3 m.c -lm
c = -0.965000 ; 0.085000
period = 2
z0 = 0.000000 ; 0.000000
zp = -0.027669 ; -0.089979
m = 0.140000 ; 0.340000
Internal Angle = 0.187833
internal radius = 0.367696
-----------------------------------------
for (int p = 1; p < pMax; p++){
if( cabs(c)<=2){
w = MultiplierMap(c,p);
iRadius = cabs(w);
if ( iRadius <= 1.0) { // attractring
iAngle = GiveTurn(w);
period=p;
break;}
} }
*/
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
const double pi = 3.141592653589793;
static inline double cabs2(complex double z) {
return (creal(z) * creal(z) + cimag(z) * cimag(z));
}
/* newton function : N(z) = z - (fp(z)-z)/f'(z)) */
complex double N( complex double c, complex double zn , int pMax, double er2){
complex double z = -zn;
complex double d = -1.0; /* d = first derivative with respect to z */
int p;
for (p=0; p < pMax; p++){
d = 2*z*d; /* first derivative with respect to z */
z = z*z +c ; /* complex quadratic polynomial */
if (cabs(z) >er2) break;
}
if ( cabs2(d) > 2)
z = zn - (z - zn)/d ;
return z;
}
/*
compute periodic point
of complex quadratic polynomial
using Newton iteration = numerical method
*/
complex double GivePeriodic(complex double c, complex double z0, int period, double eps2, double er2){
complex double z = z0;
complex double zPrev = z0; // prevoiuus value of z
int n ; // iteration
const int nMax = 64;
for (n=0; n<nMax; n++) {
z = N( c, z, period, er2);
if (cabs2(z - zPrev)< eps2) break;
zPrev = z; }
return z;
}
complex double AproximateMultiplierMap(complex double c, int period, double eps2, double er2){
complex double z; // variable z
complex double zp ; // periodic point
complex double zcr = 0.0; // critical point
complex double d = 1;
int p;
// first find periodic point
zp = GivePeriodic( c, zcr, period, eps2, er2); // Find periodic point z0 such that Fp(z0,c)=z0 using Newton's method in one complex variable
// Find w by evaluating first derivative with respect to z of Fp at z0
if ( cabs2(zp)<er2) {
z = zp;
for (p=0; p < period; p++){
d = 2*z*d; /* first derivative with respect to z */
z = z*z +c ; /* complex quadratic polynomial */
}}
else d= 10000; //
return d;
}
complex double MultiplierMap(complex double c, int period, double eps2, double er2){
complex double w;
switch(period){
case 1: w = 1.0 - csqrt(1.0-4.0*c); break; // explicit
case 2: w = 4.0*c + 4; break; //explicit
default:w = AproximateMultiplierMap(c, period, eps2, er2); break; //
}
return w;
}
/*
gives argument of complex number in turns
https://en.wikipedia.org/wiki/Turn_(geometry)
*/
double GiveTurn( double complex z){
double t;
t = carg(z);
t /= 2*pi; // now in turns
if (t<0.0) t += 1.0; // map from (-1/2,1/2] to [0, 1)
return (t);
}
int main() {
const double ER2 = 2.0 * 2.0; // ER*ER
const double EPS2 = 1e-100 * 1e-100; // EPS*EPS
int period = 3;
complex double c = -0.12565651+0.65720*I ; // https://commons.wikimedia.org/wiki/File:Fatou_componenets_3.png
complex double z0 = 0.0 ; // initial aproximation for Newton method; usuallly critical point
complex double zp; // periodic point
complex double m; // multiplier
zp = GivePeriodic( c , z0, period, EPS2, ER2); //
m = MultiplierMap ( c, period, EPS2, ER2 );
printf (" c = %f ; %f \n", creal(c), cimag(c));
printf (" period = %d \n", period);
printf (" z0 = %f ; %f \n", creal(z0), cimag(z0));
printf (" zp = %.16f ; %.16f \n", creal(zp), cimag(zp));
printf (" m = %.16f ; %.16f \n", creal(m), cimag(m));
printf (" Internal Angle = %.16f \n internal radius = %.16f \n", GiveTurn( m), cabs(m));
return 0;
}
Maxima CAS
edit/* Computes periodic points z: z=f^n(z) and its stability index ( abs(multiplier(z)) for complex quadratic polynomial : f(z)=z*z+c batch file for Maxima cas Adam Majewski 20090604 fraktal.republika.pl */ /* basic function = monic and centered complex quadratic polynomial http://en.wikipedia.org/wiki/Complex_quadratic_polynomial */ f(z,c):=z*z+c $ /* iterated function */ fn(n, z, c) := if n=1 then f(z,c) else f(fn(n-1, z, c),c) $ /* roots of Fn are periodic point of fn function */ Fn(n,z,c):=fn(n, z, c)-z $ /* gives irreducible divisors of polynomial Fn[p,z,c] which roots are periodic points of period p */ G[p,z,c]:= block( [f:divisors(p),t:1], g, f:delete(p,f), if p=1 then return(Fn(p,z,c)), for i in f do t:t*G[i,z,c], g: Fn(p,z,c)/t, return(ratsimp(g)) )$ /* use : load(cpoly); roots:GiveRoots_bf(G[3,z,c]); */ GiveRoots_bf(g):= block( [cc:bfallroots(expand(g)=0)], cc:map(rhs,cc),/* remove string "c=" */ return(cc) )$ /* -------------- main ----------------- */ load(cpoly); /* c should be inside Mandelbrot set to make attracting periodic points */ /* c:0.74486176661974*%i-0.12256116687665; center of period 3 component */ coeff:0.37496784+%i*0.21687214; /* -0.11+0.65569999*%i;*/ disp(concat("c=",string(coeff))); for p:1 step 1 thru 5 do /* period of z-cycle */ ( disp(concat("period=",string(p))), /* multiplier */ define(m(z),diff(fn(p,z,c),z,1)), /* G should be found when c is variable without value */ eq:G[p,z,c], /* here should be c as a symbol not a value */ c:coeff, /* put a value to a symbol here */ /* periodic points */ roots[p]:GiveRoots_bf(ev(eq)), /* ev puts value instead of c symbol */ /* multiplier of periodic points */ for z in roots[p] do disp(concat( "z=",string(float(z)),"; abs(multiplier(z))=",string(cabs(float(m(z)))) ) ), kill(c) )$ /*
results:
c:0.74486176661974*%i-0.12256116687665 periodic z-points: supperattracting cycle (multiplier=0): 3.0879115871966895*10^-15*%i-1.0785250533182843*10^-14=0 0.74486176661974*%i-0.12256116687665=c 0.5622795120623*%i-0.66235897862236=c*c+c === repelling cycle 0.038593416246119-1.061217891258986*%i, 0.99358185708018-0.90887310643243*%i, 0.66294971900937*%i-1.247255127827274] -------------------------------------------- for c:-0.11+0.65569999*%i; abs(multiplier) = 0.94840556944351 z1a=0.17434140717278*%i-0.23080799291989, z2a=0.57522120945524*%i-0.087122596659277, z3a=0.55547045915754*%i-0.4332890929585, abs(multiplier) =15.06988063154376 z1r=0.0085747730232722-1.05057855305735*%i, z2r=0.95628667892607-0.89213756745704*%i, z3r=0.63768304472883*%i-1.213641769411674
How to compute period of given periodic point ?
editHow is it possible to calculate the true period?
- Robert Munafo's polygon iteration method described in Mu-Ency
- Knighty's Taylor ball iteration method
Both find the lowest period nucleus in a region. If there is no nucleus in the region (either 100% exterior, or 100% interior not surrounding a nucleus) then I don't know what happens.
The polygon method can be adapted to pre-periodic Misiurewicz points. Probably the Taylor ball method can be too. A version of the ball method can be adapted to Burning Ship etc using Jacobians, where the polygon method can sometimes fail due to early folds.
int GivePeriod(complex double c){
if (cabs(c)>2.0) {return 0;} // exterior
if (cabs(1.0 - csqrt(1.0-4.0*c))<=1.0 ) {return 1;} // main cardioid
if (cabs(4.0*c + 4)<=1.0){return 2;} // period 2 component
int period = GivePeriodByIteration(c);
if ( period < 0) // last chance
{
iUnknownPeriod +=1;
//fprintf(stderr,"unknown period = %d < 0 c = %.16f %+.16f \n", period, creal(c), cimag(c) ); // print for analysis
//period = m_d_box_period_do(c, 0.5, iterMax_LastIteration);
//fprintf(stderr,"box period = %d \n", period);
}
// period > 0 means is periodic
// period = 0 means is not periodic = exterior = escaping to infinity
// period < 0 means period not found, maybe increase global variable iterMax_Period ( see local_setup)
return period;
}
marcm200
editA heuristics to get to a point where the period detection might work correctly could also be: Compute the rolling derivative from the start on, i.e 2^n*product over all iterates. If the orbit approaches an attracting cycle of length p, cyclic portions of that overall product will become smaller than one in magnitude. And repeatedly multiplying those values will eventually let the |rolling derivative| fall below any ever so small threshold. So if one were to define beforehand such a small value like 10^-40, if the rolling derivative is first below, then doing a periodicity check by number equaltiy up to an epsilon should give the correct period. I only use it with unicritical polynomials so chances are that during iteration one does not fall onto a critical point and then the rolling derivative gets stuck at 0 forever (so for z^2+c, starting at c is usually feasible, as +-sqrt(-c) is then almost always irrationally complex and not representable in software. However, with bad luck, its approximation might still lead to computer-0 within machine-epsilon).
( marcm200)
Knighty's Taylor ball iteration method
editFinding the roots of the SA polynomial as suggested by knightly is a totally different approach. Which of the many polynomial root finding algorithms do you use?
ball interval arithmetic" is also called "midpoint-radius interval".
Divide and conquer, using ball interval arithmetic to isolate the roots and Newton-Raphson to refine them. My approach to Ball interval arithmetic is very simple: To a given number z we associate a disc representing an estimation of the errors. A ball interval may be represented like this: [z] = z + r [E]
Here z is the center of the ball, r is the radius and [E] is the error symbol representing the unit disc centred at 0.
Being not a mathematician, be aware that these definitions are very very sloppy. In particular, I don't care about rounding stuff.
One can also think about [E] as a function in some "mute" variables. for example, for complex numbers we can write: [E] = f(a,b) = a * exp(i *b), where a is in [0,1] and b any real number. it can also be written like this: [E]= [0,1] * exp(i * [-inf, +inf])
A nice property of [E] is that raising it to a (positive) power will yield [E]. Another one is: [E] = -[E] ... Another one: z[E] = |z| [E]
Some basic operations on ball interval are: -Addition: [v] + [w] = v + rv [E] + w + rw [E] = (v+w) + (rv+rw) [E] -Subtraction: [v] - [w] = (v-w) + (rv+rw) [E]; because [E] will absorb the '-' sign. -Multiplication: [v] [w] = (v + rv [E]) (w + rw [E]) = v*w + v*rw [E] + w*rv [E] + rv*rw [E]? = v*w + (|v|*rw + |w|*rv + rv*rw) [E]; because [E]? = [E] The division is more complicated: It is not always defined (when 0 is inside the ball) and needs special care. -Raising to a power: use successive multiplications... but that may give too large balls... there are other methods.
With these operations one can evaluate polynomials using Horner method for example. It can also be used to iterate zn+1 = zn? + c for example and be used to find nucleus and its period instead of the box method.
You can take a look at the codes attached to below programs
See this note
How to find basin of attracting point ?
editWhat is the relation between Julia set and periodic point ?
edit- Parameter-Plane Dynamics of Fixed Points and Their Preimages For Standard Quadratic Julia Sets
- Quadratic Julia sets and periodic cycles
See also
editcode
editReferences
edit- ↑ Very badly ordered cycles of interval maps by Sourav Bhattacharya, Alexander Blokh
- ↑ Periodic_point in wikipedia
- ↑ Period of critical orbit with slow dynamics
- ↑ Numerical Methods for Finding Periodic Orbits at Scholarpedia
- ↑ Fixed points in ggplot2 by Eric
- ↑ wikipedia : Periodic_points_of_complex_quadratic_mappings#Finite_fixed_points
- ↑ wikipedia : Quadratic function
- ↑ math.stackexchange question : how-to-find-the-solution-of-a-quadratic-equation-with-complex-coefficients
- ↑ wikipedia : Quadratic equation
- ↑ math.stackexchange question how-do-i-get-the-square-root-of-a-complex-number
- ↑ Newton's method in practice: finding all roots of polynomials of degree one million efficiently Dierk Schleicher, Robin Stoll
- ↑ a b Floating Types - Using the GNU Compiler Collection (GCC)
- ↑ a b Newton's method in practice II: The iterated refinement Newton method and near-optimal complexity for finding all roots of some polynomials of very large degrees by Robin Stoll, Dierk Schleicher
- ↑ wikipedia : MPSolve
- ↑ wikipedia : Vieta's formulas
- ↑ Newton's method in practice: finding all roots of polynomials of degree one million efficiently by Dierk Schleicher, Robin Stoll
- ↑ Alan F. Beardon, Iteration of Rational Functions, Springer 1991, ISBN 0-387-95151-2, p. 41
- ↑ Alan F. Beardon, Iteration of Rational Functions, Springer 1991, ISBN 0-387-95151-2, page 99
- ↑ Monireh Akbari, Maryam Rabii, Real cubic polynomials with a fixed point of multiplicity two, Indagationes Mathematicae, Volume 26, Issue 1, 2015, Pages 64-74, ISSN 0019-3577, https://doi.org/10.1016/j.indag.2014.06.001. (https://www.sciencedirect.com/science/article/pii/S0019357714000536) Abstract: The aim of this paper is to study the dynamics of the real cubic polynomials that have a fixed point of multiplicity two. Such polynomials are conjugate to fa(x)=ax2(x−1)+x, a≠0. We will show that when a>0 and x≠1, then |fan(x)| converges to 0 or ∞ and, if a<0 and a belongs to a special subset of the parameter space, then there is a closed invariant subset Λa of R on which fa is chaotic. Keywords: Multiplicity; Chaotic; Cubic polynomial; Schwarzian derivative
- ↑ Some Julia sets by Michael Becker