Fractals/Iterations in the complex plane/Fatou coordinate

< Fractals

Contents

DescriptionEdit

Fatou functionEdit

Fatou function  :[3]

  • is defined inside petal ( attracting petal or repelling ), not on the neighbourhood of the fixed point
  • is a conformal function which satifies Abel's equation[4][5]
  • transforms f(z) to unit translation
  • maps petal to right half of plane in u coordinate.
  • unrolls invariant curvs ( orbits ) : maps "circles" to straight lines

NormalizationEdit

Fatou coordinate can be normalized = it maps critical point to zero  :[6]


Parabolic fixed point is mapped to point at infinity on Riemann sphere

Fatou coordinateEdit

Fatou coordinate u :

Description at Hyperoperations Wiki

  • what we call "Abel function"[7], they call it "Fatou coordinates".[8]
  • Fatou coordinates [9][10]
  • Shishikura perturbed Fatou coordinates [11]

ComputingEdit

"constructing approximate Fatou coordinates for analytic maps f in a neighborhood of an f 0 (z) = z + z q+1 + ... with q > 1"

  • "The first step in constructing Fatou coordinate for consists in lifting to a neighborhood of infinity by the coordinate change " [12]

1/1Edit

Domains for Fatou coordinate for

1/2Edit

1/3Edit

Orbits near fixed point
Critical orbit for f(z)=z^2 + mz where p/q=1/3 with attracting and repelling vectors

It is based on : "PARABOLIC IMPLOSION A MINI-COURSE" by ARNAUD CHERITAT.


Let's take lambda form of quadratic map :

where is a multiplier of fixed point ( here fixed point is a origin z= 0 )

When numerator p and denominator q of internal angle are :

then internal angle in turns is :[13]

and stability index of fixed point ( internal radius ) is :

Note that Cheritat uses not

Then q iteration of quadratic map :

Number k :

for some

if m=1 then k = q+1 = 4

Take k term in the expansion of denoted as  :

so

Evaluate multiplier

and C :

Let :

then prepared coordinate or pre-Fatou coordinate u are :


Here is Maxima CAS session ( where m is used for multiplier ) :

(%i1) f(z):=m*z + z^2;
(%o1) f(z):=m*z+z^2
(%i2) z3:f(f(f(z)));
(%o2) ((z^2+m*z)^2+m*(z^2+m*z))^2+m*((z^2+m*z)^2+m*(z^2+m*z))
(%i3) z3:expand(z3);
(%o3) z^8+4*m*z^7+6*m^2*z^6+2*m*z^6+4*m^3*z^5+6*m^2*z^5+m^4*z^4+6*m^3*z^4+m^2*z^4+m*z^4+2*m^4*z^3+2*m^3*z^3+2*m^2*z^3+m^4*z^2+m^3*z^2+m^2*z^2+m^3*z
(%i4) k:4;
(%o4) 4
(%i5) C:coeff(z3,z,k);
(%o5) m^4+6*m^3+m^2+m
(%i14) m:exp(2*%pi*%i/3);
(%o14) (sqrt(3)*%i)/2-1/2
(%i15) m:float(rectform(m));
(%o15) 0.86602540378444*%i-0.5
(%i19) C:float(rectform(ev(C)));
(%o19) 0.86602540378444*%i+4.499999999999998

Next session :

(%i1) z:zx+zy*%i;
(%o1) %i*zy+zx
(%i3) C:Cx+Cy*%i;
(%o3) %i*Cy+Cx
(%i4) r:3;
(%o4) 3
(%i5) u:-1/(r*C*z^r);
(%o5) -1/(3*(%i*Cy+Cx)*(%i*zy+zx)^3)
(%i8) u:expand(u);
(%o8) -1/(3*Cy*zy^3-3*%i*Cx*zy^3-9*%i*Cy*zx*zy^2-9*Cx*zx*zy^2-9*Cy*zx^2*zy+9*%i*Cx*zx^2*zy+3*%i*Cy*zx^3+3*Cx*zx^3)
(%i9) realpart(u);
(%o9) -(3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2)
(%i10) imagpart(u);
(%o10) -(3*Cx*zy^3+9*Cy*zx*zy^2-9*Cx*zx^2*zy-3*Cy*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2)

... ( to do )

ProgramsEdit

QFractEdit

QFract by INOU Hiroyuki and pictures

To build from the source code, you need :

Download source files from this page  :

First unpack the archive as follows

tar zcvf qfract-110725_2-src.tar.gz

Go to the program directory :

cd qfract-110725_2

and edit files :

  • Makefile,
  • config.h,
  • plugins/Makefile

to adjust your environment. For example in config.h change :

#define PLUGIN_PATH "/Users/inou/prog/qfract4/plugins"
#define COLORMAP_PATH "/Users/inou/prog/qfract4/colormaps"

for your own settings. Then to compile everything run from console :

make

To run the program from console :

./qfract

ReferencesEdit