Fractals/Iterations in the complex plane/Fatou coordinate 1
G Holms
editFractional iteration of the function f(x) = 1/(1+x) by [1]
Will Jagy
editBelow is an example by Will Jagy[2]
"First, an example. Begin with
which has derivative 1 at but, along the positive real axis, is slightly less than when .
We want to find a Fatou coordinate, which Milnor (page 107)[3] denotes that is infinite at and otherwise solves what is usually called the Abel functional equation,[4]
There is only one holomorphic Fatou coordinate up to an additive constant. We take
To get fractional iterates of , with real we take
and finally
The desired semigroup homomorphism holds,
with and
Alright, the case of emphasizing the positive real axis is not terribly different, as long as we restrict to the interval For any such define and in general This sequence approaches 0, and in fact does so for any in a certain open set around the interval that is called a petal.
Now, given a specific with and it is a result of Jean Ecalle at Orsay that we may take
Note that actually is defined on with but the symmetry also means that the inverse function returns to the interval
Before going on, the limit technique in the previous paragraph is given in pages 346-353 of *Iterative Functional Equations* by Marek Kuczma, Bogdan Choczewski, and Roman Ger. The solution is specifically Theorem 8.5.8 of subsection 8.5D, bottom of page 351 to top of page 353. Subsection 8.5A, pages 346-347, about Julia's equation, is part of the development.
As before, we define ( at least for ) the parametrized interpolating functions,
In particular
I calculated all of this last night. First, by the kindness of Daniel Geisler, I have a pdf of the graph of this at:
http://zakuski.math.utsa.edu/~jagy/sine_half.pdf
Note that we use the evident symmetries and
The result gives an interpolation of functions ending at but beginning at the continuous periodic sawtooth function, for then for continue with period We do get plus the holomorphicity and symmetry of show that is analytic on the full open interval
- EDIT, TUTORIAL**: Given some in the complex plane in the interior of the equilateral triangle with vertices at take in general and It does not take long to show that stays within the triangle, and that as
Second, say is a true Fatou coordinate on the triangle, although we do not know any specific value. Now, Also Induction, given we have
So, given we have
Third , let . This is a sort of asymptotic expansion (at 0) for the error is It is unlikely that putting more terms on leads to a convergent series, even in the triangle.
Fourth, given some in the triangle. We know that . So Or finally Thus the limit being used is appropriate.
Fifth, there is a bootstrapping effect in use. We have no actual value for but we can write a formal power series for the solution of a Julia equation for that is The formal power series for begins (KCG Theorem 8.5.1) with the first term in the power series of after the initial We write several more terms, We find the formal reciprocal, Finally we integrate term by term, and truncate where we like,
Numerically, let me give some indication of what happens, in particular to emphasize
x alpha(x) f(x) f(f(x)) sin x f(f(x))- sin x 1.570796 2.089608 1.140179 1.000000 1.000000 1.80442e-11 1.560796 2.089837 1.140095 0.999950 0.999950 1.11629e-09 1.550796 2.090525 1.139841 0.999800 0.999800 1.42091e-10 1.540796 2.091672 1.139419 0.999550 0.999550 3.71042e-10 1.530796 2.093279 1.138828 0.999200 0.999200 1.97844e-10 1.520796 2.095349 1.138070 0.998750 0.998750 -2.82238e-10 1.510796 2.097883 1.137144 0.998201 0.998201 -7.31867e-10 1.500796 2.100884 1.136052 0.997551 0.997551 -1.29813e-09 1.490796 2.104355 1.134794 0.996802 0.996802 -1.14504e-09 1.480796 2.108299 1.133372 0.995953 0.995953 9.09416e-11 1.470796 2.112721 1.131787 0.995004 0.995004 1.57743e-09 1.460796 2.117625 1.130040 0.993956 0.993956 5.63618e-10 1.450796 2.123017 1.128133 0.992809 0.992809 -3.00337e-10 1.440796 2.128902 1.126066 0.991562 0.991562 1.19926e-09 1.430796 2.135285 1.123843 0.990216 0.990216 2.46512e-09 1.420796 2.142174 1.121465 0.988771 0.988771 -2.4357e-10 1.410796 2.149577 1.118932 0.987227 0.987227 -1.01798e-10 1.400796 2.157500 1.116249 0.985585 0.985585 -1.72108e-10 1.390796 2.165952 1.113415 0.983844 0.983844 -2.31266e-10 1.380796 2.174942 1.110434 0.982004 0.982004 -4.08812e-10 1.370796 2.184481 1.107308 0.980067 0.980067 1.02334e-09 1.360796 2.194576 1.104038 0.978031 0.978031 3.59356e-10 1.350796 2.205241 1.100627 0.975897 0.975897 2.36773e-09 1.340796 2.216486 1.097077 0.973666 0.973666 -1.56162e-10 1.330796 2.228323 1.093390 0.971338 0.971338 -5.29822e-11 1.320796 2.240766 1.089569 0.968912 0.968912 8.31102e-10 1.310796 2.253827 1.085616 0.966390 0.966390 -2.91373e-10 1.300796 2.267522 1.081532 0.963771 0.963771 -5.45974e-10 1.290796 2.281865 1.077322 0.961055 0.961055 -1.43066e-10 1.280796 2.296873 1.072986 0.958244 0.958244 -1.58642e-10 1.270796 2.312562 1.068526 0.955336 0.955336 -3.14188e-10 1.260796 2.328950 1.063947 0.952334 0.952334 3.20439e-10 1.250796 2.346055 1.059248 0.949235 0.949235 4.32107e-10 1.240796 2.363898 1.054434 0.946042 0.946042 1.49412e-10 1.230796 2.382498 1.049505 0.942755 0.942755 3.42659e-10 1.220796 2.401878 1.044464 0.939373 0.939373 4.62813e-10 1.210796 2.422059 1.039314 0.935897 0.935897 3.63659e-11 1.200796 2.443066 1.034056 0.932327 0.932327 3.08511e-09 1.190796 2.464924 1.028693 0.928665 0.928665 -8.44918e-10 1.180796 2.487659 1.023226 0.924909 0.924909 6.32892e-10 1.170796 2.511298 1.017658 0.921061 0.921061 -1.80822e-09 1.160796 2.535871 1.011990 0.917121 0.917121 3.02818e-10 1.150796 2.561407 1.006225 0.913089 0.913089 -3.52346e-10 1.140796 2.587938 1.000365 0.908966 0.908966 9.35707e-10 1.130796 2.615498 0.994410 0.904752 0.904752 -2.54345e-10 1.120796 2.644121 0.988364 0.900447 0.900447 -6.20484e-10 1.110796 2.673845 0.982228 0.896052 0.896052 -7.91102e-10 1.100796 2.704708 0.976004 0.891568 0.891568 -1.62699e-09 1.090796 2.736749 0.969693 0.886995 0.886995 -5.2244e-10 1.080796 2.770013 0.963297 0.882333 0.882333 -8.63283e-10 1.070796 2.804543 0.956818 0.877583 0.877583 -2.85301e-10 1.060796 2.840386 0.950258 0.872745 0.872745 -1.30496e-10 1.050796 2.877592 0.943618 0.867819 0.867819 -2.82645e-10 1.040796 2.916212 0.936899 0.862807 0.862807 8.81083e-10 1.030796 2.956300 0.930104 0.857709 0.857709 -7.70554e-10 1.020796 2.997914 0.923233 0.852525 0.852525 1.0091e-09 1.010796 3.041114 0.916288 0.847255 0.847255 -4.96194e-10 1.000796 3.085963 0.909270 0.841901 0.841901 6.71018e-10 0.990796 3.132529 0.902182 0.836463 0.836463 -9.28187e-10 0.980796 3.180880 0.895023 0.830941 0.830941 -1.45774e-10 0.970796 3.231092 0.887796 0.825336 0.825336 1.26379e-09 0.960796 3.283242 0.880502 0.819648 0.819648 -1.84287e-10 0.950796 3.337412 0.873142 0.813878 0.813878 5.84829e-10 0.940796 3.393689 0.865718 0.808028 0.808028 -2.81364e-10 0.930796 3.452165 0.858230 0.802096 0.802096 -1.54149e-10 0.920796 3.512937 0.850679 0.796084 0.796084 -8.29982e-10 0.910796 3.576106 0.843068 0.789992 0.789992 3.00744e-10 0.900796 3.641781 0.835396 0.783822 0.783822 8.10903e-10 0.890796 3.710076 0.827666 0.777573 0.777573 -1.23505e-10 0.880796 3.781111 0.819878 0.771246 0.771246 5.31326e-10 0.870796 3.855015 0.812033 0.764842 0.764842 2.26584e-10 0.860796 3.931924 0.804132 0.758362 0.758362 3.97021e-10 0.850796 4.011981 0.796177 0.751806 0.751806 -7.84946e-10 0.840796 4.095339 0.788168 0.745174 0.745174 -3.03503e-10 0.830796 4.182159 0.780107 0.738469 0.738469 2.63202e-10 0.820796 4.272614 0.771994 0.731689 0.731689 -7.36693e-11 0.810796 4.366886 0.763830 0.724836 0.724836 -1.84604e-10 0.800796 4.465171 0.755616 0.717911 0.717911 3.22084e-10 0.790796 4.567674 0.747354 0.710914 0.710914 -2.93204e-10 0.780796 4.674617 0.739043 0.703845 0.703845 1.58448e-11 0.770796 4.786234 0.730686 0.696707 0.696707 -8.89497e-10 0.760796 4.902777 0.722282 0.689498 0.689498 2.40592e-10 0.750796 5.024513 0.713833 0.682221 0.682221 -3.11017e-10 0.740796 5.151728 0.705339 0.674876 0.674876 7.32554e-10 0.730796 5.284728 0.696801 0.667463 0.667463 -1.73919e-10 0.720796 5.423842 0.688221 0.659983 0.659983 -1.66422e-10 0.710796 5.569419 0.679599 0.652437 0.652437 5.99509e-10 0.700796 5.721838 0.670935 0.644827 0.644827 -2.45424e-10 0.690796 5.881501 0.662231 0.637151 0.637151 -6.29884e-10 0.680796 6.048843 0.653487 0.629412 0.629412 1.86262e-10 0.670796 6.224333 0.644704 0.621610 0.621610 -5.04285e-10 0.660796 6.408471 0.635883 0.613746 0.613746 -6.94697e-12 0.650796 6.601802 0.627025 0.605820 0.605820 -3.81152e-10 0.640796 6.804910 0.618129 0.597834 0.597834 4.10222e-10 0.630796 7.018428 0.609198 0.589788 0.589788 -1.91816e-10 0.620796 7.243040 0.600231 0.581683 0.581683 -4.90592e-10 0.610796 7.479486 0.591230 0.573520 0.573520 4.29742e-10 0.600796 7.728570 0.582195 0.565300 0.565300 -1.38719e-10 0.590796 7.991165 0.573126 0.557023 0.557023 -4.05081e-10 0.580796 8.268218 0.564025 0.548690 0.548690 -5.76379e-10 0.570796 8.560763 0.554892 0.540302 0.540302 1.49155e-10 0.560796 8.869925 0.545728 0.531861 0.531861 1.0459e-11 0.550796 9.196935 0.536533 0.523366 0.523366 -1.15537e-10 0.540796 9.543137 0.527308 0.514819 0.514819 -2.84462e-10 0.530796 9.910004 0.518054 0.506220 0.506220 6.24335e-11 0.520796 10.299155 0.508771 0.497571 0.497571 -9.24078e-12 0.510796 10.712365 0.499460 0.488872 0.488872 8.29491e-11 0.500796 11.151592 0.490122 0.480124 0.480124 3.31769e-10 0.490796 11.618996 0.480757 0.471328 0.471328 2.27307e-10 0.480796 12.116964 0.471366 0.462485 0.462485 3.06434e-10 0.470796 12.648140 0.461949 0.453596 0.453596 4.77846e-11 0.460796 13.215459 0.452507 0.444662 0.444662 1.53162e-10 0.450796 13.822186 0.443041 0.435682 0.435682 -2.87541e-10 0.440796 14.471963 0.433551 0.426660 0.426660 -5.20332e-11 0.430796 15.168860 0.424037 0.417595 0.417595 -8.17951e-11 0.420796 15.917436 0.414501 0.408487 0.408487 -4.6788e-10 0.410796 16.722816 0.404944 0.399340 0.399340 3.70729e-10 0.400796 17.590771 0.395364 0.390152 0.390152 -6.97547e-11 0.390796 18.527825 0.385764 0.380925 0.380925 -2.45522e-10 0.380796 19.541368 0.376143 0.371660 0.371660 4.09758e-10 0.370796 20.639804 0.366503 0.362358 0.362358 1.15221e-10 0.360796 21.832721 0.356843 0.353019 0.353019 -4.75977e-11 0.350796 23.131092 0.347165 0.343646 0.343646 -4.27696e-10 0.340796 24.547531 0.337468 0.334238 0.334238 2.12743e-10 0.330796 26.096586 0.327755 0.324796 0.324796 4.06133e-10 0.320796 27.795115 0.318024 0.315322 0.315322 -2.71476e-10 0.310796 29.662732 0.308276 0.305817 0.305817 -3.74988e-10 0.300796 31.722372 0.298513 0.296281 0.296281 -1.50491e-10 0.290796 34.000986 0.288734 0.286715 0.286715 2.17798e-11 0.280796 36.530413 0.278940 0.277121 0.277121 4.538e-10 0.270796 39.348484 0.269132 0.267499 0.267499 5.24261e-11 0.260796 42.500432 0.259311 0.257850 0.257850 7.03059e-11 0.250796 46.040690 0.249475 0.248175 0.248175 -1.83863e-10 0.240796 50.035239 0.239628 0.238476 0.238476 4.06119e-10 0.230796 54.564668 0.229768 0.228753 0.228753 -2.56253e-10 0.220796 59.728239 0.219896 0.219007 0.219007 -7.32657e-11 0.210796 65.649323 0.210013 0.209239 0.209239 3.43103e-11 0.200796 72.482783 0.200120 0.199450 0.199450 -1.20351e-10 0.190796 80.425131 0.190216 0.189641 0.189641 1.07544e-10 0.180796 89.728726 0.180303 0.179813 0.179813 9.93221e-11 0.170796 100.721954 0.170380 0.169967 0.169967 2.63903e-10 0.160796 113.838454 0.160449 0.160104 0.160104 6.74095e-10 0.150796 129.660347 0.150510 0.150225 0.150225 4.34057e-10 0.140796 148.983681 0.140563 0.140332 0.140332 -2.90965e-11 0.130796 172.920186 0.130610 0.130424 0.130424 4.02502e-10 0.120796 203.060297 0.120649 0.120503 0.120503 -1.85618e-11 0.110796 241.743576 0.110683 0.110570 0.110570 4.2044e-11 0.100796 292.525678 0.100711 0.100626 0.100626 -1.73504e-11 0.090796 361.023855 0.090734 0.090672 0.090672 2.88887e-10 0.080796 456.537044 0.080752 0.080708 0.080708 -2.90848e-10 0.070796 595.371955 0.070767 0.070737 0.070737 4.71103e-10 0.060796 808.285844 0.060778 0.060759 0.060759 -3.90636e-10 0.050796 1159.094719 0.050785 0.050774 0.050774 3.01403e-11 0.040796 1798.677124 0.040791 0.040785 0.040785 3.77092e-10 0.030796 3159.000053 0.030794 0.030791 0.030791 2.4813e-10 0.020796 6931.973789 0.020796 0.020795 0.020795 2.95307e-10 0.010796 25732.234731 0.010796 0.010796 0.010796 1.31774e-10 x alpha(x) f(x) f(f(x)) sin x f(f(x))- sin x
References
edit- ↑ Fractional iteration of the function f(x) = 1/(1+x) by Gottfried Helms
- ↑ mathoverflow question (45608) : does-the-formal-power-series-solution-to-ffx-sin-x-converge
- ↑ Dynamics in one complex variable: introductory lectures John W. Milnor
- ↑ wikipedia: Abel equation
[1]: http://oskicat.berkeley.edu/record=b14897585~S1