Fractals/Iterations in the complex plane/Fatou coordinate for f(z)=z^2 + c
on the boundary of main cardioid
edit"constructing approximate Fatou coordinates for analytic maps f in a neighborhood of an f 0 (z) = z + z q+1 + ... with q > 1"[1][2][3]
- "The first step in constructing Fatou coordinate for consists in lifting to a neighborhood of infinity by the coordinate change " [4]
1/1
editHere c =1/4 is a cusp of main cardioid[5]
f(z) = z^2+1/4
-
Circle and cardioid domains
-
two Euclidean discs which are symmetric to each other with respect to the real line and whose boundaries intersect the boundary points of J[6]
Max distance from parabolic orbits to the fixed point = 0.7071067811865476
1/2
edit1/3
editIt is based on : "PARABOLIC IMPLOSION A MINI-COURSE" by ARNAUD CHERITAT.
Let's take lambda form of quadratic map :
where is a multiplier of fixed point ( here fixed point is a origin z= 0 )
When numerator p and denominator q of internal angle are :
then internal angle in turns is :[7]
and stability index of fixed point ( internal radius ) is :
Note that Cheritat uses not
Then q iteration of quadratic map :
Number k :
- for some
if m=1 then k = q+1 = 4
Take k term in the expansion of denoted as :
so
Evaluate multiplier
and C :
Let :
then prepared coordinate or pre-Fatou coordinate u are :
Here is Maxima CAS session ( where m is used for multiplier ) :
(%i1) f(z):=m*z + z^2; (%o1) f(z):=m*z+z^2 (%i2) z3:f(f(f(z))); (%o2) ((z^2+m*z)^2+m*(z^2+m*z))^2+m*((z^2+m*z)^2+m*(z^2+m*z)) (%i3) z3:expand(z3); (%o3) z^8+4*m*z^7+6*m^2*z^6+2*m*z^6+4*m^3*z^5+6*m^2*z^5+m^4*z^4+6*m^3*z^4+m^2*z^4+m*z^4+2*m^4*z^3+2*m^3*z^3+2*m^2*z^3+m^4*z^2+m^3*z^2+m^2*z^2+m^3*z (%i4) k:4; (%o4) 4 (%i5) C:coeff(z3,z,k); (%o5) m^4+6*m^3+m^2+m (%i14) m:exp(2*%pi*%i/3); (%o14) (sqrt(3)*%i)/2-1/2 (%i15) m:float(rectform(m)); (%o15) 0.86602540378444*%i-0.5 (%i19) C:float(rectform(ev(C))); (%o19) 0.86602540378444*%i+4.499999999999998
Next session :
(%i1) z:zx+zy*%i; (%o1) %i*zy+zx (%i3) C:Cx+Cy*%i; (%o3) %i*Cy+Cx (%i4) r:3; (%o4) 3 (%i5) u:-1/(r*C*z^r); (%o5) -1/(3*(%i*Cy+Cx)*(%i*zy+zx)^3) (%i8) u:expand(u); (%o8) -1/(3*Cy*zy^3-3*%i*Cx*zy^3-9*%i*Cy*zx*zy^2-9*Cx*zx*zy^2-9*Cy*zx^2*zy+9*%i*Cx*zx^2*zy+3*%i*Cy*zx^3+3*Cx*zx^3) (%i9) realpart(u); (%o9) -(3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2) (%i10) imagpart(u); (%o10) -(3*Cx*zy^3+9*Cy*zx*zy^2-9*Cx*zx^2*zy-3*Cy*zx^3)/((3*Cy*zy^3-9*Cx*zx*zy^2-9*Cy*zx^2*zy+3*Cx*zx^3)^2+(-3*Cx*zy^3-9*Cy*zx*zy^2+9*Cx*zx^2*zy+3*Cy*zx^3)^2)
... ( to do )
References
edit- ↑ Classification of diffeomorphisms and ε-neighborhoods of orbits Maja Resman, University of Zagreb, Croatia
- ↑ The resurgent character of the Fatou coordinates of a simple parabolic germ Artem Dudko (SUNY), David Sauzin
- ↑ Dynamics of Holomorphic Maps: Resurgence of Fatou coordinates, and Poly-time Computability of Julia Sets Author: Dudko, Artem
- ↑ LIOUVILLE THEOREM WITH PARAMETERS: ASYMPTOTICS OF CERTAIN RATIONAL INTEGRALS IN DIFFERENTIAL FIELDS by MALGORZATA STAWISKA
- ↑ On the directional derivative of the Hausdorff dimension of quadratic polynomial Julia sets at 1/4 by Ludwik Jaksztas
- ↑ Polynomial maps with a Julia set of positive Lebesgue measure: Fibonacci maps ∗ Sebastian van Strien, University of Amsterdam, the Netherlands Tomasz Nowicki,
- ↑ PARABOLIC IMPLOSION A MINI-COURSE by ARNAUD CHERITAT