The Unit Circle is a circle with its center at the origin (0,0) and a radius of one unit.
Angles are always measured from the positive xaxis (also called the "right horizon"). Angles measured counterclockwise have positive values; angles measured clockwise have negative values.
Contents
Defining Sine and Cosine in terms of the unit circleEdit
In the unit circle shown here, a unitlength radius has been drawn from the origin to a point (x,y) on the circle.
A line perpendicular to the xaxis, drawn through the point (x,y), intersects the xaxis at the point with the abscissa x. Similarly, a line perpendicular to the yaxis intersects the yaxis at the point with the ordinate y. The angle between the xaxis and the radius is .
We define the basic trigonometric functions of any angle as follows:
can be algebraically defined.
These three trigonometric functions can be used whether the angle is measured in degrees or radians as long as it specified which, when calculating trigonometric functions from angles or vice versa.
Alternative definitionsEdit
 A previous chapter used SohCahToa to define the trigonometric functions. The advantage of the unit circle is that θ can be extended outside the first quadrant [0,π/2], which allows us to define these functions on the interval [∞,+∞].
 If trigonometry is applied to vectors, it is more convenient if the radius of the circle is not equal to unity. For example, if vector A has magnitude A=A:
Video LinksEdit
More about this topic can be found at the 'Khan Academy:'
Some Values for Sine and CosineEdit
A unit circle with certain exact values marked on it is below:
It is worth memorizing some of the values of sine and cosine on the unit circle (cosine is equal to x while sine is equal to y). You should at least become familiar with the values for and know where are on the unit circle .
Unit circles form the basis of most analog clocks and animations on computers since the cos and sin correspond to the x and y positions of the end of the line segments representing the hands of the clock.
Clock Hands
