'I have a friend who's an artist and he's some times taken a view which I don't agree with very well. He'll hold up a flower and say, "look how beautiful it is," and I'll agree, I think. And he says, "you see, I as an artist can see how beautiful this is, but you as a scientist, oh, take this all apart and it becomes a dull thing." And I think he's kind of nutty. First of all, the beauty that he sees is available to other people and to me, too, I believe, although I might not be quite as refined aesthetically as he is. But I can appreciate the beauty of a flower. At the same time, I see much more about the flower that he sees. I could imagine the cells in there, the complicated actions inside which also have a beauty. I mean, it's not just beauty at this dimension of one centimeter: there is also beauty at a smaller dimension, the inner structure...also the processes. The fact that the colors in the flower are evolved in order to attract insects to pollinate it is interesting -- it means that insects can see the color. It adds a question -- does this aesthetic sense also exist in the lower forms that are...why is it aesthetic, all kinds of interesting questions which a science knowledge only adds to the excitement and mystery and the awe of a flower. It only adds. I don't understand how it subtracts.' ... Richard Feynman

Dedication

edit

This guide is meant as a supplement to a year long freshman level physics course with a trigonometry prerequisite. Some ideas from calculus are included in the book but are not necessary to understand the content. The overview of equations and definitions and eventually sample problem solutions are pertinent to an introductory, college-level physics course suitable for pre-meds. This is not a stand alone textbook rather the intent is to help the student and any other interested person quickly familiarize themselves with concepts and terminology so as to use the appropriate equations to get the desired answers to physics problems.

Contributing

edit

Everyone is encouraged to contribute to the guide. Be bold in your edits! If you have a question about how we do things here look at the Style Guide or post your question on the talk page.

Karl Wick Adon Metcalfe Brendan Abbott Tristan Sabel Fromund Hock Martin Hoecker-Martinez
Physics Study Guide (Print Version)
Units Linear Motion Force Momentum Normal Force and Friction Work Energy
Torque & Circular Motion Fluids Fields Gravity Waves Wave overtones Standing Waves Sound
Thermodynamics Electricity Magnetism Optics
Physical Constants Frictional Coefficients Greek Alphabet Logarithms Vectors and Scalars Other Topics


Our first review of the Physics Study Guide is in, by email to the author:

Thanks karl!
it's very helpful!!!!

Interwiki

edit
This guide is meant as a supplement to a year long freshman level physics course with a trigonometry prerequisite suitable for pre-meds. This is not a stand alone textbook. The intent is to help the student and any other interested person quickly familiarize themselves with concepts and terminology.
[[:File:{{{cover}}}|Image credit]]