Ada Programming/Packages
Ada encourages the division of code into separate modules called packages. Each package can contain any combination of items.
Some of the benefits of using packages are:
- package contents are placed in a separate namespace, preventing naming collisions,
- implementation details of the package can be hidden from the programmer (information hiding),
- object orientation requires defining a type and its primitive subprograms within a package, and
- packages that are library units can be separately compiled.
Some of the more common package usages are:
- a group of related subprograms along with their shared data, with the data not visible outside the package,
- one or more data types along with subprograms for manipulating those data types, and
- a generic package that can be instantiated under varying conditions.
The following is a quote from the current Ada Reference Manual Section 7: Packages. RM 7(1) [Annotated]
Packages are program units that allow the specification of groups of logically related entities. Typically, a package contains the declaration of a type (often a private type or private extension) along with the declaration of primitive subprograms of the type, which can be called from outside the package, while their inner workings remain hidden from outside users.
Separate compilation
editNote: The following chapters deal with packages on library level. This is the most common use, since packages are the basic code structuring means in Ada. However, Ada being a block oriented language, packages can be declared at any level in any declarative region. In this case, the normal visibility rules apply, also for the package body.
Package specifications and bodies on library level are compilation units, so can be separately compiled. Ada has nothing to say about how and where compilation units are stored. This is implementation dependent. (Most implementations indeed store compilation units in files of their own; name suffixes vary, GNAT uses .ads
and .adb
, APEX .1.ada
and .2.ada
.) The package body can itself be divided into multiple parts by specifying that subprogram implementations or bodies of nested packages are separate. These are then further compilation units.
One of the biggest advantages of Ada over most other programming languages is its well-defined system of modularization and separate compilation. Even though Ada allows separate compilation, it maintains the strong type checking among the various compilations by enforcing rules of compilation order and compatibility checking. Ada compilers determine the compilation sequence; no make file is needed. Ada uses separate compilation (like Modula-2, Java and C#), and not independent compilation (as C/C++ does), in which the various parts are compiled with no knowledge of the other compilation units with which they will be combined.
A note to C/C++ users: Yes, you can use the preprocessor to emulate separate compilation — but it is only an emulation and the smallest mistake leads to very hard to find bugs. It is telling that all C/C++ successor languages including D have turned away from the independent compilation and the use of the preprocessor.
So it's good to know that Ada has had separate compilation ever since Ada-83 and is probably the most sophisticated implementation around.
Parts of a package
editA package generally consists of two parts, the specification and the body. A package specification can be further divided in two logical parts, the visible part and the private part. Only the visible part of the specification is mandatory. The private part of the specification is optional, and a package specification might not have a package body—the package body only exists to complete any incomplete items in the specification. Subprogram declarations are the most common incomplete items. There must not be a package body if there is no incomplete declaration, and there has to be a package body if there is some incomplete declaration in the specification.
To understand the value of the three-way division, consider the case of a package that has already been released and is in use. A change to the visible part of the specification will require that the programmers of all using software verify that the change does not affect the using code. A change to the private part of the declaration will require that all using code be recompiled but no review is normally needed. Some changes to the private part can change the meaning of the client code however. An example is changing a private record type into a private access type. This change can be done with changes in the private part, but change the semantic meaning of assignment in the clients code. A change to the package body will only require that the file containing the package body be recompiled, because nothing outside of the package body can ever access anything within the package body (beyond the declarations in the specification part).
A common usage of the three parts is to declare the existence of a type and some subprograms that operate on that type in the visible part, define the actual structure of the type (e.g. as a record) in the private part, and provide the code to implement the subprograms in the package body.
The package specification — the visible part
editThe visible part of a package specification describes all the subprogram specifications, variables, types, constants etc. that are visible to anyone who wishes to use the package.
package
Public_Only_Packageis
type
Range_10is
range
1 .. 10;end
Public_Only_Package;
Since Range_10 is an integer type, there are a lot of operations declared implicitly in this package.
The private part
editThe private part of a package serves two purposes:
- To complete the deferred definition of private types and constants.
- To export entities only visible to the children of the package.
package
Package_With_Privateis
type
Private_Typeis
private
;private
type
Private_Typeis
array
(1 .. 10)of
Integer;end
Package_With_Private;
Since the type is private, clients cannot make any use of it as long as there are no operations defined in the visible part.
The package body
editThe package body defines the implementation of the package. All the subprograms defined in the specification have to be implemented in the body. New subprograms, types and objects can be defined in the body that are not visible to the users of the package.
package
Package_With_Bodyis
type
Basic_Recordis
private
;procedure
Set_A (This :in
out
Basic_Record; An_A :in
Integer);function
Get_A (This : Basic_Record)return
Integer;private
type
Basic_Recordis
record
A : Integer;end
record
;pragma
Pure_Function (Get_A); -- not a standard Ada pragmapragma
Inline (Get_A);pragma
Inline (Set_A);end
Package_With_Body;
package
body
Package_With_Bodyis
procedure
Set_A (This :in
out
Basic_Record; An_A :in
Integer)is
begin
This.A := An_A;end
Set_A;function
Get_A (This : Basic_Record)return
Integeris
begin
return
This.A;end
Get_A;end
Package_With_Body;
pragma
Pure_Function- Only available when using GNAT.
Two Flavors of Package
editThe packages above each define a type together with operations of the type. When the type's composition is placed in the private part of a package, the package then exports what is known to be an Abstract Data Type or ADT for short. Objects of the type are then constructed by calling one of the subprograms associated with the respective type.
A different kind of package is the Abstract State Machine or ASM. A package will be modeling a single item of the problem domain, such as the motor of a car. If a program controls one car, there is typically just one motor, or the motor. The public part of the package specification only declares the operations of the module (of the motor, say), but no type. All data of the module are hidden in the body of the package where they act as state variables to be queried, or manipulated by the subprograms of the package. The initialization part sets the state variables to their initial values.
package
Package_With_Bodyis
procedure
Set_A (An_A :in
Integer);function
Get_Areturn
Integer;private
pragma
Pure_Function (Get_A);—not a standard Ada pragmaend
Package_With_Body;
package
body
Package_With_Bodyis
The_A: Integer;procedure
Set_A (An_A :in
Integer)is
begin
The_A := An_A;end
Set_A;function
Get_Areturn
Integeris
begin
return
The_A;end
Get_A;begin
The_A := 0;end
Package_With_Body;
(A note on construction:
The package initialization part after begin
corresponds to a construction subprogram
of an ADT package.
However, as a state machine is an “object” already, “construction” is
happening during package initialization.
(Here it sets the state variable The_A to its initial value.)
An ASM package can be viewed as a singleton.)
Using packages
edit This section is a stub. You can help Wikibooks by expanding it. |
To utilize a package it's needed to name it in a with clause, whereas to have direct visibility of that package it's needed to name it in a use clause.
For C++ programmers, Ada's with clause is analogous to the C++ preprocessor's #include and Ada's use is similar to the using namespace statement in C++. In particular, use leads to the same namespace pollution problems as using namespace and thus should be used sparingly. Renaming can shorten long compound names to a manageable length, while the use type clause makes a type's operators visible. These features reduce the need for plain use.
Standard with
editThe standard with clause provides visibility for the public part of a unit to the following defined unit. The imported package can be used in any part of the defined unit, including the body when the clause is used in the specification.
Private with
editThis language feature is only available from Ada 2005 on.
private
with
Ada.Strings.Unbounded;package
Private_Withis
-- The package Ada.String.Unbounded is not visible at this pointtype
Basic_Recordis
private
;procedure
Set_A (This :in
out
Basic_Record; An_A :in
String);function
Get_A (This : Basic_Record)return
String;private
-- The visibility of package Ada.String.Unbounded starts herepackage
Unboundedrenames
Ada.Strings.Unbounded;type
Basic_Recordis
record
A : Unbounded.Unbounded_String;end
record
;pragma
Pure_Function (Get_A);pragma
Inline (Get_A);pragma
Inline (Set_A);end
Private_With;
package
body
Private_Withis
-- The private withed package is visible in the body tooprocedure
Set_A (This :in
out
Basic_Record; An_A :in
String)is
begin
This.A := Unbounded.To_Unbounded_String (An_A);end
Set_A;function
Get_A (This : Basic_Record)return
Stringis
begin
return
Unbounded.To_String (This.A);end
Get_A;end
Private_With;
Limited with
editThis language feature is only available from Ada 2005 on.
The limited with can be used to represent two mutually dependent type (or more) located in separate packages.
limited
with
Departments;package
Employeesis
type
Employeeis
tagged
private
;procedure
Assign_Employee (E :in
out
Employee; D :access
Departments.Department'Class);type
Dept_Ptris
access
all
Departments.Department'Class;function
Current_Department(E :in
Employee)return
Dept_Ptr; ...end
Employees;
limited
with
Employees;package
Departmentsis
type
Departmentis
tagged
private
;procedure
Choose_Manager (Dept :in
out
Department; Manager :access
Employees.Employee'Class); ...end
Departments;
Making operators visible
editSuppose you have a package Universe that defines some numeric type T.
with
Universe;procedure
Pis
V: Universe.T := 10.0;begin
V := V * 42.0; -- illegalend
P;
This program fragment is illegal since the operators implicitly defined in Universe are not directly visible.
You have four choices to make the program legal.
Use a use_package_clause. This makes all declarations in Universe directly visible (provided they are not hidden because of other homographs).
with
Universe;use
Universe;procedure
Pis
V: Universe.T := 10.0;begin
V := V * 42.0;end
P;
Use renaming. This is error prone since if you rename many operators, cut and paste errors are probable.
with
Universe;procedure
Pis
function
"*" (Left, Right: Universe.T)return
Universe.Trenames
Universe."*";function
"/" (Left, Right: Universe.T)return
Universe.Trenames
Universe."*"; -- oops V: Universe.T := 10.0;begin
V := V * 42.0;end
P;
Use qualification. This is extremely ugly and unreadable.
with
Universe;procedure
Pis
V: Universe.T := 10.0;begin
V := Universe."*" (V, 42.0);end
P;
Use the use_type_clause. This makes only the operators in Universe directly visible.
with
Universe;procedure
Pis
V: Universe.T := 10.0;use
type
Universe.T;begin
V := V * 42.0;end
P;
There is a special beauty in the use_type_clause. Suppose you have a set of packages like so:
with
Universe;package
Packis
subtype
Tis
Universe.T;end
Pack;
with
Pack;procedure
Pis
V: Pack.T := 10.0;begin
V := V * 42.0; -- illegalend
P;
Now you've got into trouble. Since Universe is not made visible, you cannot use a use_package_clause for Universe to make the operator directly visible, nor can you use qualification for the same reason. Also a use_package_clause for Pack does not help, since the operator is not defined in Pack. The effect of the above construct means that the operator is not nameable, i.e. it cannot be renamed in a renaming statement.
Of course you can add Universe to the context clause, but this may be impossible due to some other reasons (e.g. coding standards); also adding the operators to Pack may be forbidden or not feasible. So what to do?
The solution is simple. Use the use_type_clause for Pack.T and all is well!
with
Pack;procedure
Pis
V: Pack.T := 10.0;use
type
Pack.T;begin
V := V * 42.0;end
P;
Package organisation
edit This section is a stub. You can help Wikibooks by expanding it. |
Nested packages
editA nested package is a package declared inside a package.
Like a normal package, it has a public part and a private part.
From outside, items declared in a nested package N
will have visibility as usual; the
programmer may refer to these items using a full dotted name like
P.N.X
. (But not P.M.Y
.)
package
Pis
D: Integer; -- a nested package:package
Nis
X: Integer;private
Foo: Integer;end
N; E: Integer;private
-- another nested package:package
Mis
Y: Integer;private
Bar: Integer;end
M;end
P;
Inside a package, declarations become visible as they are introduced, in textual order.
That is, a nested package N that is declared after some other declaration D can refer to this declaration D.
A declaration E following N can refer to items of N.[1]
But neither can “look ahead” and refer to any declaration that
goes after them.
For example, spec N
above cannot refer to M
in any way.
In the following example, a type is derived in both of the two nested packages Disks and Books. Notice that the full declaration of parent type Item appears before the two nested packages.
with
Ada.Strings.Unbounded;use
Ada.Strings.Unbounded;package
Shelfis
pragma
Elaborate_Body; -- things to put on the shelftype
IDis
range
1_000 .. 9_999;type
Item (Identifier : ID)is
abstract
tagged
limited
null
record
;type
Item_Refis
access
constant
Item'class;function
Next_IDreturn
ID; -- a fresh ID for an Item to Put on the shelfpackage
Disksis
type
Musicis
( Jazz, Rock, Raga, Classic, Pop, Soul);type
Disk (Style : Music; Identifier : ID)is
new
Item (Identifier)with
record
Artist : Unbounded_String; Title : Unbounded_String;end
record
;end
Disks;package
Booksis
type
Literatureis
( Play, Novel, Poem, Story, Text, Art);type
Book (Kind : Literature; Identifier : ID)is
new
Item (Identifier)with
record
Authors : Unbounded_String; Title : Unbounded_String; Year : Integer;end
record
;end
Books; -- shelf manipulationprocedure
Put (it: Item_Ref);function
Get (identifier : ID)return
Item_Ref;function
Search (title : String)return
ID;private
-- keeping private things privatepackage
Boxesis
type
Treasure(Identifier: ID)is
limited
private
;private
type
Treasure(Identifier: ID)is
new
Item(Identifier)with
null
record
;end
Boxes;end
Shelf;
A package may also be nested inside a subprogram. In fact, packages can be declared in any declarative part, including those of a block.
Child packages
editAda allows one to extend the functionality of a unit (package) with so-called children (child packages). With certain exceptions, all the functionality of the parent is available to a child. This means that all public and private declarations of the parent package are visible to all child packages.
The above example, reworked as a hierarchy of packages, looks like this. Notice that the package Ada.Strings.Unbounded is not needed by the top level package Shelf, hence its with clause doesn't appear here. (We have added a match function for searching a shelf, though):
package
Shelfis
pragma
Elaborate_Body;type
IDis
range
1_000 .. 9_999;type
Item (Identifier : ID)is
abstract
tagged
limited
null
record
;type
Item_Refis
access
constant
Item'Class;function
Next_IDreturn
ID; -- a fresh ID for an Item to Put on the shelffunction
match (it : Item; Text : String)return
Booleanis
abstract
; -- see whether It has bibliographic information matching Text -- shelf manipulationprocedure
Put (it: Item_Ref);function
Get (identifier : ID)return
Item_Ref;function
Search (title : String)return
ID;end
Shelf;
The name of a child package consists of the parent unit's name followed by the child package's identifier, separated by a period (dot) `.'.
with
Ada.Strings.Unbounded;use
Ada.Strings.Unbounded;package
Shelf.Booksis
type
Literatureis
( Play, Novel, Poem, Story, Text, Art);type
Book (Kind : Literature; Identifier : ID)is
new
Item (Identifier)with
record
Authors : Unbounded_String; Title : Unbounded_String; Year : Integer;end
record
;function
match(it: Book; text: String)return
Boolean;end
Shelf.Books;
Book has two components of type Unbounded_String, so Ada.Strings.Unbounded appears in a with clause of the child package. This is unlike the nested packages case which requires that all units needed by any one of the nested packages be listed in the context clause of the enclosing package (see 10.1.2 Context Clauses - With Clauses (Annotated)). Child packages thus give better control over package dependences. With clauses are more local.
The new child package Shelf.Disks looks similar. The Boxes package which was a nested package in the private part of the original Shelf package is moved to a private child package:
private
package
Shelf.Boxesis
type
Treasure(Identifier: ID)is
limited
private
;private
type
Treasure(Identifier: ID)is
new
Item(Identifier)with
null
record
;function
match(it: Treasure; text: String)return
Boolean;end
Shelf.Boxes;
The privacy of the package means that it can only be used by equally private client units. These clients include private siblings and also the bodies of siblings (as bodies are never public).
Child packages may be listed in context clauses just like normal packages.
A with
of a child also 'withs' the parent.
Subunits
editA subunit is just a feature to move a body into a place of its own when otherwise the enclosing body will become too large. It can also be used for limiting the scope of context clauses.
The subunits allow to physically divide a package into different compilation units without breaking the logical unity of the package. Usually each separated subunit goes to a different file allowing separate compilation of each subunit and independent version control history for each one.
package
body
Packis
procedure
Procis
separate
;end
Pack;with
Some_Unit;separate
(Pack)procedure
Procis
begin
...end
Proc;
Notes
edit- ↑ For example,
E: Integer := D + N.X;