Secant, Cosecant, and Cotangent
edit
The secant of an angle is the reciprocal of its cosine.
sec
x
=
1
cos
x
{\displaystyle \sec x={\frac {1}{\cos x}}}
The cosecant of an angle is the reciprocal of its sine.
cosec
x
=
1
sin
x
{\displaystyle \operatorname {cosec} x={\frac {1}{\sin x}}}
[ note 1]
The cotangent of an angle is the reciprocal of its tangent.
cot
x
=
1
tan
x
{\displaystyle \cot x={\frac {1}{\tan x}}}
Graph of sec x
Graph of cosec x
Graph of cot x
Solving Equations with Secants, Cosecants, and Cotangents
edit
Solving an equation with secants, cosecants, or cotangents is pretty much the same method as with any other trigonometric equation.
e.g. Solve
−
sec
x
=
2
+
cos
x
{\displaystyle -\sec x=2+\cos x}
for
0
<
x
<
2
π
{\displaystyle 0<x<2\pi }
−
sec
x
=
2
+
cos
x
−
1
=
2
cos
x
+
cos
2
x
cos
2
x
+
2
cos
x
+
1
=
0
(
cos
x
+
1
)
2
=
0
cos
x
+
1
=
0
cos
x
=
−
1
x
=
π
{\displaystyle {\begin{aligned}-\sec x&=2+\cos x\\-1&=2\cos x+\cos ^{2}x\\\cos ^{2}x+2\cos x+1&=0\\(\cos x+1)^{2}&=0\\\cos x+1&=0\\\cos x&=-1\\x&=\pi \end{aligned}}}
The addition formulae are used when we have a trigonometric function applied to a sum or difference, e.g.
sin
(
θ
+
π
6
)
{\displaystyle \sin(\theta +{\frac {\pi }{6}})}
.
For sine, cosine, and tangent, the addition formulae are:[ note 2]
sin
(
A
±
B
)
=
sin
A
cos
B
±
cos
A
sin
B
cos
(
A
±
B
)
=
cos
A
cos
B
∓
sin
A
sin
B
tan
(
A
±
B
)
=
tan
A
±
tan
B
1
∓
tan
A
tan
B
{\displaystyle {\begin{aligned}\sin(A\pm B)&=\sin A\cos B\pm \cos A\sin B\\\cos(A\pm B)&=\cos A\cos B\mp \sin A\sin B\\\tan(A\pm B)&={\frac {\tan A\pm \tan B}{1\mp \tan A\tan B}}\end{aligned}}}
The double angle formulae are a special case of the addition formulae, when both of the terms in the sum are equal.
sin
(
2
A
)
=
sin
(
A
+
A
)
=
sin
A
cos
A
+
sin
A
cos
A
=
2
sin
A
cos
A
cos
(
2
A
)
=
cos
(
A
+
A
)
=
cos
A
cos
A
−
sin
A
sin
A
=
cos
2
A
−
sin
2
A
=
2
cos
2
A
−
1
=
1
−
2
sin
2
A
tan
(
2
A
)
=
tan
(
A
+
A
)
=
tan
A
+
tan
A
1
−
tan
A
tan
A
=
2
tan
A
1
−
tan
2
A
{\displaystyle {\begin{aligned}\sin(2A)&=\sin(A+A)=\sin A\cos A+\sin A\cos A=2\sin A\cos A\\\cos(2A)&=\cos(A+A)=\cos A\cos A-\sin A\sin A=\cos ^{2}A-\sin ^{2}A=2\cos ^{2}A-1=1-2\sin ^{2}A\\\tan(2A)&=\tan(A+A)={\frac {\tan A+\tan A}{1-\tan A\tan A}}={\frac {2\tan A}{1-\tan ^{2}A}}\end{aligned}}}
Converting
a
sin
θ
+
b
cos
θ
{\displaystyle a\sin \theta +b\cos \theta }
to
R
sin
(
θ
±
α
)
{\displaystyle R\sin(\theta \pm \alpha )}
or
R
cos
(
θ
±
α
)
{\displaystyle R\cos(\theta \pm \alpha )}
edit
It is helpful when solving trigonometric equations to convert an expression into a single term. To do this, we can use the addition formulae.
e.g. Solve
sin
θ
+
3
cos
θ
=
1
{\displaystyle \sin \theta +{\sqrt {3}}\cos \theta =1}
for
0
<
θ
<
2
π
{\displaystyle 0<\theta <2\pi }
sin
θ
+
3
cos
θ
=
R
sin
(
θ
+
α
)
sin
θ
+
3
cos
θ
=
R
sin
θ
cos
α
+
R
cos
θ
sin
α
Equate coefficients of
sin
θ
→
R
cos
α
=
1
Equate coefficients of
cos
θ
→
R
sin
α
=
3
tan
α
=
R
sin
α
R
cos
α
=
3
1
∴
α
=
π
3
R
cos
(
π
3
)
=
1
R
=
1
1
2
=
2
2
sin
(
θ
+
π
3
)
=
1
sin
(
θ
+
π
3
)
=
1
2
θ
+
π
3
=
{
5
π
6
,
13
π
6
}
←
Be careful with the domain of
θ
+
π
3
θ
=
{
3
π
6
,
11
π
6
}
{\displaystyle {\begin{aligned}\sin \theta +{\sqrt {3}}\cos \theta &=R\sin(\theta +\alpha )\\\sin \theta +{\sqrt {3}}\cos \theta &=R\sin \theta \cos \alpha +R\cos \theta \sin \alpha \\{\text{Equate coefficients of }}\sin \theta \to \quad R\cos \alpha &=1\\{\text{Equate coefficients of }}\cos \theta \to \quad R\sin \alpha &={\sqrt {3}}\\\tan \alpha &={\frac {R\sin \alpha }{R\cos \alpha }}={\frac {\sqrt {3}}{1}}\\\therefore \alpha &={\frac {\pi }{3}}\\R\cos({\frac {\pi }{3}})&=1\\R&={\frac {1}{\tfrac {1}{2}}}=2\\2\sin(\theta +{\frac {\pi }{3}})&=1\\\sin(\theta +{\frac {\pi }{3}})&={\frac {1}{2}}\\\theta +{\frac {\pi }{3}}&=\left\{{\frac {5\pi }{6}},{\frac {13\pi }{6}}\right\}\leftarrow {\text{Be careful with the domain of }}\theta +{\frac {\pi }{3}}\\\theta &=\left\{{\frac {3\pi }{6}},{\frac {11\pi }{6}}\right\}\end{aligned}}}
Using
R
cos
(
θ
±
α
)
{\displaystyle R\cos(\theta \pm \alpha )}
is pretty similar.
e.g. Solve
2
sin
θ
+
2
cos
θ
=
1
{\displaystyle {\sqrt {2}}\sin \theta +{\sqrt {2}}\cos \theta =1}
for
0
<
θ
<
2
π
{\displaystyle 0<\theta <2\pi }
2
sin
θ
+
2
cos
θ
=
R
cos
(
θ
−
α
)
2
sin
θ
+
2
cos
θ
=
R
cos
θ
cos
α
+
R
sin
θ
sin
α
Equate coefficients of
sin
θ
→
R
sin
α
=
2
Equate coefficients of
cos
θ
→
R
cos
α
=
2
tan
α
=
R
sin
α
R
cos
α
=
2
2
=
1
∴
α
=
π
4
R
sin
(
π
4
)
=
2
R
(
1
2
)
=
2
R
=
2
(
2
)
=
2
2
cos
(
θ
−
π
4
)
=
1
cos
(
θ
−
π
4
)
=
1
2
θ
−
π
4
=
{
π
3
,
5
π
3
}
θ
=
{
7
π
12
,
23
π
12
}
{\displaystyle {\begin{aligned}{\sqrt {2}}\sin \theta +{\sqrt {2}}\cos \theta &=R\cos(\theta -\alpha )\\{\sqrt {2}}\sin \theta +{\sqrt {2}}\cos \theta &=R\cos \theta \cos \alpha +R\sin \theta \sin \alpha \\{\text{Equate coefficients of}}\sin \theta \to \quad R\sin \alpha &={\sqrt {2}}\\{\text{Equate coefficients of}}\cos \theta \to \quad R\cos \alpha &={\sqrt {2}}\\\tan \alpha &={\frac {R\sin \alpha }{R\cos \alpha }}={\frac {\sqrt {2}}{\sqrt {2}}}=1\\\therefore \alpha &={\frac {\pi }{4}}\\R\sin \left({\frac {\pi }{4}}\right)&={\sqrt {2}}\\R\left({\frac {1}{\sqrt {2}}}\right)&={\sqrt {2}}\\R&={\sqrt {2}}({\sqrt {2}})=2\\2\cos(\theta -{\frac {\pi }{4}})&=1\\\cos(\theta -{\frac {\pi }{4}})&={\frac {1}{2}}\\\theta -{\frac {\pi }{4}}&=\left\{{\frac {\pi }{3}},{\frac {5\pi }{3}}\right\}\\\theta &=\left\{{\frac {7\pi }{12}},{\frac {23\pi }{12}}\right\}\end{aligned}}}
Notes
↑ Some sources may use
csc
x
{\displaystyle \csc x}
, but this notation is not endorsed by Cambridge
↑ The proofs of these formulae are beyond the scope of the Cambridge Syllabus, but you can read about the proofs at Wikipedia
← Logarithmic and Exponential Functions · Differentiation →