Differentiating Logarithmic and Exponential functions
edit
The function
y
=
e
x
{\displaystyle y=e^{x}}
is its own derivative:
d
d
x
e
x
=
e
x
{\displaystyle {\dfrac {d}{dx}}e^{x}=e^{x}}
. The constant
e
{\displaystyle e}
is defined such that this is true.
An exponential function with a different base can be converted into a function of the form
e
k
x
{\displaystyle e^{kx}}
using logarithms, e.g.
2
x
=
e
ln
2
x
{\displaystyle 2^{x}=e^{\ln 2x}}
. The derivative of such an expression can be found using the chain rule:
d
d
x
2
x
=
d
d
x
e
ln
2
x
=
ln
2
e
ln
2
x
=
2
x
ln
2
{\displaystyle {\dfrac {d}{dx}}2^{x}={\dfrac {d}{dx}}e^{\ln 2x}=\ln 2\ e^{\ln 2x}=2^{x}\ln 2}
.
d
d
x
e
f
(
x
)
=
f
′
(
x
)
e
f
(
x
)
{\displaystyle {\dfrac {d}{dx}}e^{f(x)}=f'(x)e^{f(x)}}
The derivative of a logarithm is
d
d
x
ln
x
=
1
x
{\displaystyle {\dfrac {d}{dx}}\ln x={\frac {1}{x}}}
. Applying the chain rule to this produces the result:
d
d
x
ln
(
f
(
x
)
)
=
f
′
(
x
)
f
(
x
)
{\displaystyle {\dfrac {d}{dx}}\ln(f(x))={\frac {f'(x)}{f(x)}}}
It is important to know how these rules interact with other expressions.
e.g.
d
d
x
e
x
2
+
ln
1
x
=
e
x
2
+
ln
1
x
(
d
d
x
x
2
+
ln
1
x
)
=
e
x
2
+
ln
1
x
(
2
x
+
−
x
−
2
1
/
x
)
=
e
x
2
+
ln
1
x
(
2
x
−
x
−
1
)
{\displaystyle {\dfrac {d}{dx}}e^{x^{2}+\ln {\tfrac {1}{x}}}=e^{x^{2}+\ln {\tfrac {1}{x}}}({\dfrac {d}{dx}}x^{2}+\ln {\tfrac {1}{x}})=e^{x^{2}+\ln {\tfrac {1}{x}}}(2x+{\frac {-x^{-2}}{1/x}})=e^{x^{2}+\ln {\tfrac {1}{x}}}(2x-x^{-1})}
Differentiating Trigonometric Functions
edit
The product rule states that:
d
d
x
f
(
x
)
g
(
x
)
=
f
(
x
)
g
′
(
x
)
+
g
(
x
)
f
′
(
x
)
{\displaystyle {\dfrac {d}{dx}}f(x)g(x)=f(x)g'(x)+g(x)f'(x)}
e.g.
d
d
x
x
e
x
=
x
d
d
x
e
x
+
e
x
d
d
x
x
=
x
e
x
+
e
x
=
e
x
(
x
+
1
)
{\displaystyle {\dfrac {d}{dx}}xe^{x}=x{\dfrac {d}{dx}}e^{x}+e^{x}{\dfrac {d}{dx}}x=xe^{x}+e^{x}=e^{x}(x+1)}
The quotient rule is a special case of the product rule when one of the terms in the product is a reciprocal.
e.g. Evaluate
d
d
x
2
x
+
3
x
+
4
{\displaystyle {\dfrac {d}{dx}}{\frac {2x+3}{x+4}}}
d
d
x
2
x
+
3
x
+
4
=
d
d
x
(
2
x
+
3
)
1
x
+
4
=
(
2
x
+
3
)
d
d
x
(
1
x
+
4
)
+
1
x
+
4
d
d
x
(
2
x
+
3
)
=
−
(
2
x
+
3
)
(
x
+
4
)
−
2
+
1
x
+
4
(
2
)
=
−
(
2
x
+
3
)
(
x
+
4
)
2
+
2
x
+
4
=
−
(
2
x
+
3
)
(
x
+
4
)
2
+
2
x
+
8
(
x
+
4
)
2
=
2
x
+
8
−
2
x
−
3
(
x
+
4
)
2
=
5
(
x
+
4
)
2
{\displaystyle {\begin{aligned}{\dfrac {d}{dx}}{\frac {2x+3}{x+4}}&={\dfrac {d}{dx}}(2x+3){\frac {1}{x+4}}\\&=(2x+3){\dfrac {d}{dx}}\left({\frac {1}{x+4}}\right)+{\frac {1}{x+4}}{\dfrac {d}{dx}}(2x+3)\\&=-(2x+3)(x+4)^{-2}+{\frac {1}{x+4}}(2)\\&={\frac {-(2x+3)}{(x+4)^{2}}}+{\frac {2}{x+4}}\\&={\frac {-(2x+3)}{(x+4)^{2}}}+{\frac {2x+8}{(x+4)^{2}}}\\&={\frac {2x+8-2x-3}{(x+4)^{2}}}\\&={\frac {5}{(x+4)^{2}}}\end{aligned}}}
In general:
d
d
x
u
v
=
u
d
d
x
1
v
+
1
v
d
u
d
x
=
u
(
−
v
)
−
2
d
v
d
x
+
v
v
2
d
u
d
x
=
−
u
d
v
d
x
+
v
d
u
d
x
v
2
=
v
d
u
d
x
−
u
d
v
d
x
v
2
{\displaystyle {\begin{aligned}{\dfrac {d}{dx}}{\frac {u}{v}}&=u{\dfrac {d}{dx}}{\frac {1}{v}}+{\frac {1}{v}}{\dfrac {du}{dx}}\\&=u(-v)^{-2}{\dfrac {dv}{dx}}+{\frac {v}{v^{2}}}{\dfrac {du}{dx}}\\&={\frac {-u{\tfrac {dv}{dx}}+v{\tfrac {du}{dx}}}{v^{2}}}\\&={\frac {v{\tfrac {du}{dx}}-u{\tfrac {dv}{dx}}}{v^{2}}}\end{aligned}}}
Implicit Differentiation
edit
Implicit differentiation is where we differentiate a function which is not defined explicitly, with y as the subject. To do this, it is sensible to use the chain rule.
e.g. Find an expression for
d
y
d
x
{\displaystyle {\dfrac {dy}{dx}}}
when
x
2
+
y
2
=
1
{\displaystyle x^{2}+y^{2}=1}
.
x
2
+
y
2
=
1
d
d
x
x
2
+
y
2
=
d
d
x
1
2
x
+
d
y
2
d
x
=
0
2
x
+
d
y
2
d
y
d
y
d
x
=
0
Use the chain rule
2
x
+
2
y
d
y
d
x
=
0
2
y
d
y
d
x
=
−
2
x
d
y
d
x
=
−
2
x
2
y
=
−
x
y
{\displaystyle {\begin{aligned}x^{2}+y^{2}&=1\\{\dfrac {d}{dx}}x^{2}+y^{2}&={\dfrac {d}{dx}}1\\2x+{\dfrac {dy^{2}}{dx}}&=0\\2x+{\dfrac {dy^{2}}{dy}}{\dfrac {dy}{dx}}&=0\quad {\text{Use the chain rule}}\\2x+2y{\dfrac {dy}{dx}}&=0\\2y{\dfrac {dy}{dx}}&=-2x\\{\dfrac {dy}{dx}}&=-{\frac {2x}{2y}}=-{\frac {x}{y}}\end{aligned}}}
Sometimes, we need to use the product rule too.
e.g. Find an expression for
d
y
d
x
{\displaystyle {\dfrac {dy}{dx}}}
when
x
2
+
6
x
y
+
y
2
=
1
{\displaystyle x^{2}+6xy+y^{2}=1}
.
x
2
+
6
x
y
+
y
2
=
1
d
d
x
x
2
+
6
x
y
+
y
2
=
d
d
x
1
2
x
+
d
d
x
6
x
y
+
d
d
x
y
2
=
0
2
x
+
6
x
d
y
d
x
+
y
d
d
x
6
x
+
d
y
2
d
y
d
y
d
x
=
0
2
x
+
6
x
d
y
d
x
+
6
y
+
2
y
d
y
d
x
=
0
2
x
+
6
y
+
(
6
x
+
2
y
)
d
y
d
x
=
0
(
6
x
+
2
y
)
d
y
d
x
=
−
2
x
−
6
y
d
y
d
x
=
−
2
x
−
6
y
6
x
+
2
y
d
y
d
x
=
−
x
−
3
y
3
x
+
y
{\displaystyle {\begin{aligned}x^{2}+6xy+y^{2}&=1\\{\dfrac {d}{dx}}x^{2}+6xy+y^{2}&={\dfrac {d}{dx}}1\\2x+{\dfrac {d}{dx}}6xy+{\dfrac {d}{dx}}y^{2}&=0\\2x+6x{\dfrac {dy}{dx}}+y{\dfrac {d}{dx}}6x+{\dfrac {dy^{2}}{dy}}{\dfrac {dy}{dx}}&=0\\2x+6x{\dfrac {dy}{dx}}+6y+2y{\dfrac {dy}{dx}}&=0\\2x+6y+(6x+2y){\dfrac {dy}{dx}}&=0\\(6x+2y){\dfrac {dy}{dx}}&=-2x-6y\\{\dfrac {dy}{dx}}&={\frac {-2x-6y}{6x+2y}}\\{\dfrac {dy}{dx}}&={\frac {-x-3y}{3x+y}}\end{aligned}}}
Parametric Differentiation
edit