Logarithms and Exponents
edit
A logarithm is the inverse function of an exponent.
e.g. The inverse of the function
f
(
x
)
=
3
x
{\displaystyle f(x)=3^{x}}
is
f
−
1
(
x
)
=
log
3
x
{\displaystyle f^{-1}(x)=\log _{3}x}
.
In general,
y
=
b
x
⟺
x
=
log
b
y
{\displaystyle y=b^{x}\iff x=\log _{b}y}
, given that
b
>
0
{\displaystyle b>0}
.
The laws of logarithms can be derived from the laws of exponentiation:
x
a
+
b
=
x
a
×
x
b
⟺
log
a
+
log
b
=
log
a
b
x
a
−
b
=
x
a
÷
x
b
⟺
log
a
−
log
b
=
log
a
/
b
(
x
a
)
b
=
x
a
b
⟺
log
a
b
=
b
log
a
{\displaystyle {\begin{aligned}x^{a+b}=x^{a}\times x^{b}&\iff \log a+\log b=\log ab\\x^{a-b}=x^{a}\div x^{b}&\iff \log a-\log b=\log a/b\\(x^{a})^{b}=x^{ab}&\iff \log a^{b}=b\log a\end{aligned}}}
These laws apply to logarithms of any given base
Solving Logarithmic and Exponential Equations
edit
An exponential equation is an equation in which one or more of the terms is an exponential function. e.g.
5
x
=
2
x
+
2
{\displaystyle 5^{x}=2^{x+2}}
. Exponential equations can be solved with logarithms.
e.g. Solve
3
x
+
1
=
4
2
x
−
1
{\displaystyle 3^{x+1}=4^{2x-1}}
3
x
+
1
=
4
2
x
−
1
(
x
+
1
)
ln
3
=
(
2
x
−
1
)
ln
4
x
ln
3
+
ln
3
=
2
x
ln
4
−
ln
4
ln
3
+
ln
4
=
x
(
2
ln
4
−
ln
3
)
x
=
ln
3
+
ln
4
2
ln
4
−
ln
3
x
≈
1.4844
{\displaystyle {\begin{aligned}3^{x+1}&=4^{2x-1}\\(x+1)\ln 3&=(2x-1)\ln 4\\x\ln 3+\ln 3&=2x\ln 4-\ln 4\\\ln 3+\ln 4&=x(2\ln 4-\ln 3)\\x&={\frac {\ln 3+\ln 4}{2\ln 4-\ln 3}}\\x&\approx 1.4844\end{aligned}}}
A logarithmic equation is an equation wherein one or more of the terms is a logarithm.
e.g. Solve
lg
x
+
lg
(
x
+
2
)
=
2
{\displaystyle \lg x+\lg(x+2)=2}
[ note 1]
lg
x
+
lg
(
x
+
2
)
=
2
lg
(
x
(
x
+
2
)
)
=
2
x
(
x
+
2
)
=
100
x
2
+
2
x
=
100
(
x
+
1
)
2
=
101
x
+
1
=
101
x
=
−
1
±
101
{\displaystyle {\begin{aligned}\lg x+\lg(x+2)&=2\\\lg(x(x+2))&=2\\x(x+2)&=100\\x^{2}+2x&=100\\(x+1)^{2}&=101\\x+1&={\sqrt {101}}\\x&=-1\pm {\sqrt {101}}\end{aligned}}}
In maths and science, it is easier to deal with linear relationships than non-linear relationships. Logarithms can be used to convert some non-linear relationships into linear relationships.
Exponential Relationships
edit
An exponential relationship is of the form
y
=
a
b
x
{\displaystyle y=ab^{x}}
. If we take the natural logarithm of both sides, we get
ln
y
=
ln
a
+
x
ln
b
{\displaystyle \ln y=\ln a+x\ln b}
. We now have a linear relationship between
ln
y
{\displaystyle \ln y}
and
x
{\displaystyle x}
.
e.g. The following data is related with an exponential relationship. Determine this exponential relationship, then convert it to linear form.
Exponential relationship
⟹
y
=
a
b
x
5
=
a
b
0
=
a
(
1
)
a
=
5
y
=
5
b
x
45
=
5
b
2
9
=
b
2
b
=
3
y
=
5
(
3
x
)
{\displaystyle {\begin{aligned}{\text{Exponential relationship }}\implies y&=ab^{x}\\5&=ab^{0}=a(1)\\a&=5\\y&=5b^{x}\\45&=5b^{2}\\9&=b^{2}\\b&=3\\y&=5(3^{x})\end{aligned}}}
Now convert it to linear form by taking the natural logarithm of both sides:
y
=
5
(
3
x
)
ln
y
=
ln
5
+
x
ln
3
{\displaystyle {\begin{aligned}y&=5(3^{x})\\\ln y&=\ln 5+x\ln 3\end{aligned}}}
A power relationship is of the form
y
=
a
x
b
{\displaystyle y=ax^{b}}
. If we take the natural logarithm of both sides, we get
ln
y
=
ln
a
+
b
ln
x
{\displaystyle \ln y=\ln a+b\ln x}
. This is a linear relationship between
ln
y
{\displaystyle \ln y}
and
ln
x
{\displaystyle \ln x}
.
e.g. The amount of time that a planet takes to travel around the sun (its orbital period) and its distance from the sun are related by a power law. Use the following data[ 1] to deduce this power law:
Planet
Distance from Sun /106 km
Orbital Period /days
Earth
149.6
365.2
Mars
227.9
687.0
Jupiter
778.6
4331
Power law
⟹
T
=
a
R
b
Use Earth data
⟹
365.2
=
a
(
149.6
b
)
ln
365.2
=
ln
a
+
b
ln
149.6
Use Mars data
⟹
687.0
=
a
(
227.9
b
)
ln
687.0
=
ln
a
+
b
ln
227.9
ln
687.0
−
ln
365.2
=
ln
a
−
ln
a
+
b
ln
227.9
−
b
ln
149.6
ln
687.0
365.2
=
0
+
b
(
ln
227.9
149.6
)
b
=
ln
687.0
365.2
ln
227.9
149.6
≈
1.5011
ln
365.2
=
ln
a
+
1.5011
ln
149.6
ln
a
=
ln
365.2
−
ln
1839.9
ln
a
=
ln
0.1985
a
=
0.1985
∴
T
=
0.1985
R
1.5011
{\displaystyle {\begin{aligned}{\text{Power law}}\implies T&=aR^{b}\\{\text{Use Earth data}}\implies 365.2&=a(149.6^{b})\\\ln 365.2&=\ln a+b\ln 149.6\\{\text{Use Mars data}}\implies 687.0&=a(227.9^{b})\\\ln 687.0&=\ln a+b\ln 227.9\\\ln 687.0-\ln 365.2&=\ln a-\ln a+b\ln 227.9-b\ln 149.6\\\ln {\frac {687.0}{365.2}}&=0+b(\ln {\frac {227.9}{149.6}})\\b&={\frac {\ln {\tfrac {687.0}{365.2}}}{\ln {\tfrac {227.9}{149.6}}}}\approx 1.5011\\\ln 365.2&=\ln a+1.5011\ln 149.6\\\ln a&=\ln 365.2-\ln 1839.9\\\ln a&=\ln 0.1985\\a&=0.1985\\\therefore T&=0.1985R^{1.5011}\end{aligned}}}
References
↑ Retrieved from NASA's Planetary Fact Sheet
Notes
↑
lg
{\displaystyle \lg }
is another way of writing
log
10
{\displaystyle \log _{10}}
← Algebra · Trigonometry →