DERIVAR LAS SIGUIENTES FUNCIONES
1) f ( x ) = 10 x 2 − 9 x − 4 {\displaystyle \ f(x)=10x^{2}-9x-4}
2) f ( x ) = 6 x 3 − 5 x 2 + x − 9 {\displaystyle \ f(x)=6x^{3}-5x^{2}+x-9}
3) f ( x ) = ( x 3 − 7 ) ( 2 x 2 + 3 ) {\displaystyle \ f(x)=(x^{3}-7)(2x^{2}+3)}
4) f ( x ) = x 2 ( 3 x 4 − 7 x + 2 ) {\displaystyle \ f(x)=x^{2}(3x^{4}-7x+2)}
5) f ( x ) = 4 x − 5 3 x + 2 {\displaystyle \ f(x)={\frac {4x-5}{3x+2}}}
6) f ( x ) = 8 − x + 3 x 2 2 − 9 x {\displaystyle \ f(x)={\frac {8-x+3x^{2}}{2-9x}}}
7) f ( x ) = 1 1 + x + x 2 + x 3 {\displaystyle \ f(x)={\frac {1}{1+x+x^{2}+x^{3}}}}
8) f ( x ) = 3 x − 1 x 2 {\displaystyle \ f(x)={\frac {3x-1}{x^{2}}}}
9) x 2 + y 2 = 1 {\displaystyle \ x^{2}+y^{2}=1}
10) y 2 = x − 1 x + 1 {\displaystyle \ y^{2}={\frac {x-1}{x+1}}}
11) x 2 + x y = 2 {\displaystyle \ x^{2}+xy=2}
12) x 2 y + x y 2 = 6 {\displaystyle \ x^{2}y+xy^{2}=6}
13) 1 y + 1 x = 1 {\displaystyle \ {\frac {1}{y}}+{\frac {1}{x}}=1}
14) y 2 = x 2 ( x 2 + 1 ) {\displaystyle \ y^{2}=x^{2}(x^{2}+1)}
15) x 2 y 2 = x 2 + y 2 {\displaystyle \ x^{2}y^{2}=x^{2}+y^{2}}
HALLAR EL LIMITE DE LAS SIGUIENTES FUNCIONES
dada : f ( x ) = x 2 − 3 x {\displaystyle \ f(x)=x^{2}-3x} hallar: lim h → 0 f ( x + h ) − f ( x ) h {\displaystyle \lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}