Trigonometry/Law of Cosines

< Trigonometry

Contents

Law of CosinesEdit

Law-of-cosines1.svg

The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines:[1]

where is the angle between sides and .

Does the formula make sense?Edit

This formula had better agree with the Pythagorean Theorem when .

So try it...

When ,

The and the formula reduces to the usual Pythagorean theorem.

PermutationsEdit

For any triangle with angles and corresponding opposite side lengths , the Law of Cosines states that

ProofEdit

Law-of-cosines2.svg

Dropping a perpendicular from vertex to intersect (or extended) at splits this triangle into two right-angled triangles and , with altitude from side .

First we will find the lengths of the other two sides of triangle in terms of known quantities, using triangle .

Side is split into two segments, with total length .

has length
has length

Now we can use the Pythagorean Theorem to find , since .

The corresponding expressions for and can be proved similarly.

The formula can be rearranged:

and similarly for and .

ApplicationsEdit

This formula can be used to find the third side of a triangle if the other two sides and the angle between them are known. The rearranged formula can be used to find the angles of a triangle if all three sides are known. See Solving Triangles Given SAS.

NotesEdit