Thermodynamic Processes for an Ideal GasEdit
Let us first consider the expansion and compression of an ideal gas from an initial volume V_{1} to a final volume V_{2} under constanttemperature (isothermal) conditions. From the definition of pressurevolume work, we have:
If we assume the process occurs reversibly, then where P is the pressure of the gas; therefore
Now let us use the equation of state for an ideal gas, which is where n is the number of moles of gas, R is the ideal gas constant, and T is the absolute (Kelvin) temperature. Substituting for P, we get
If we have a closed system, then n is a constant; moreover, since we have stipulated that this process occurs under isothermal conditions, T is also a constant. Therefore, the integral simplifies to:
This integral may be solved to yield
Next we consider the change in the internal energy of the ideal gas upon isothermal expansion/compression. It is helpful to review the two key assumptions that underlie the ideal gas model:
 Ideal gas particles are point particles.
 Ideal gas particles have no interparticular forces.
From these two statements, we now contemplate what would happen to the internal energy (U) of an ideal gas upon isothermal expansion or compression. Because ideal gas particles are point particles, if the gas sample is compressed, the particles will not experience any change in energy because they have no internal volume to get "squeezed". Similarly, because they have no interparticular forces, they do not experience any change in attraction or repulsion between different particles if they are squeezed closer together. Hence, we may (correctly) reason that for an isothermal process on an ideal gas, the change in internal energy is zero.
(isothermal process, ideal gas)
(This same result may be rigorously proved using the thermodynamic master equations, or by using statistical thermodynamics.) Note that because U is a state function, will always be equal to zero for any isothermal process on an ideal gas, whether or not it occurs reversibly.
Because of the First Law of Thermodynamics,
and because , the energy change associated with heat upon isothermal reversible expansion or compression is just the negative of the work, or
. In a similar fashion, other results may be derived for processes on ideal gases. A summary of results is given below.
Equation Table ( )Edit
Constant Pressure  Constant Volume  Isothermal  Adiabatic  
Variable  
[for a monoatomic ideal gas] 

Work 

Heat Capacity,  or  
Internal Energy,  



Enthalpy, 

Entropy 
Molar Thermodynamic Properties for an Ideal GasEdit
We are given that the molar Gibbs free energy of an ideal is . Let's try and derive ; noting that and assuming that the internal energy and enthalpy of an ideal gas are independent of pressure and volume.