Not to be confused with homogeneous equations, an equation homogeneous in x and y of degree n is an equation of the form
F
(
x
,
y
,
y
′
)
=
0
{\displaystyle F(x,y,y')=0}
Such that
a
n
F
(
x
,
y
,
y
′
)
=
F
(
a
x
,
a
y
,
y
′
)
{\displaystyle a^{n}F(x,y,y')=F(ax,ay,y')}
.
Then the equation can take the form
x
n
F
(
1
,
y
x
,
y
′
)
=
0
{\displaystyle x^{n}F\left(1,{\frac {y}{x}},y'\right)=0}
Which is essentially another in the form
x
n
F
(
y
x
,
y
′
)
=
0
{\displaystyle x^{n}F\left({\frac {y}{x}},y'\right)=0}
.
If we can solve this equation for
y
′
{\displaystyle y'}
, then we can easily use the substitution method mentioned earlier to solve this equation. Suppose, however, that it is more easily solved for
y
x
{\displaystyle {\frac {y}{x}}}
,
y
x
=
f
(
y
′
)
{\displaystyle {\frac {y}{x}}=f(y')}
So that
y
=
x
f
(
y
′
)
{\displaystyle y=xf(y')}
.
We can differentiate this to get
y
′
=
f
(
y
′
)
+
x
f
′
(
y
′
)
d
y
′
d
x
{\displaystyle y'=f(y')+xf'(y'){\frac {dy'}{dx}}}
Then re-arranging things,
d
x
x
=
f
′
(
y
′
)
y
′
−
f
(
y
′
)
d
y
′
{\displaystyle {\frac {dx}{x}}={\frac {f'(y')}{y'-f(y')}}dy'}
So that upon integrating,
l
n
(
x
)
=
∫
f
′
(
y
′
)
y
′
−
f
(
y
′
)
d
y
′
+
C
{\displaystyle ln(x)=\int {\frac {f'(y')}{y'-f(y')}}dy'+C}
We get
x
=
C
e
∫
f
′
(
y
′
)
y
′
−
f
(
y
′
)
d
y
′
{\displaystyle x=Ce^{\int {\frac {f'(y')}{y'-f(y')}}dy'}}
Thus, if we can eliminate y' between two simultaneous equations
y
=
x
f
(
y
′
)
{\displaystyle y=xf(y')}
and
x
=
C
e
∫
f
′
(
y
′
)
y
′
−
f
(
y
′
)
d
y
′
{\displaystyle x=Ce^{\int {\frac {f'(y')}{y'-f(y')}}dy'}}
,
then we can obtain the general solution..
Homogeneous Ordinary Differential Equations
edit
A function P is homogeneous of order
α
{\displaystyle \alpha }
if
a
α
P
(
x
,
y
)
=
P
(
a
x
,
a
y
)
{\displaystyle a^{\alpha }P(x,y)=P(ax,ay)}
. A homogeneous ordinary differential equation is an equation of the form P(x,y)dx+Q(x,y)dy=0 where P and Q are homogeneous of the same order.
The first usage of the following method for solving homogeneous ordinary differential equations was by Leibniz in 1691. Using the substitution y=vx or x=vy, we can make turn the equation into a separable equation.
d
y
d
x
=
F
(
y
x
)
{\displaystyle {\frac {dy}{dx}}=F\left({\frac {y}{x}}\right)}
v
(
x
,
y
)
=
y
x
{\displaystyle v(x,y)={\frac {y}{x}}}
y
=
v
x
{\displaystyle y=vx\,}
Now we need to find v ':
d
y
d
x
=
v
+
d
v
d
x
x
{\displaystyle {\frac {dy}{dx}}=v+{\frac {dv}{dx}}x}
Plug back into the original equation
v
+
x
d
v
d
x
=
F
(
v
)
{\displaystyle v+x{\frac {dv}{dx}}=F(v)}
d
v
d
x
=
F
(
v
)
−
v
x
{\displaystyle {\frac {dv}{dx}}={\frac {F(v)-v}{x}}}
Solve for v(x), then plug into the equation of v to get y
y
(
x
)
=
x
v
(
x
)
{\displaystyle y(x)=xv(x)\,}
Again, don't memorize the equation. Remember the general method, and apply it.
d
y
d
x
=
5
y
x
+
3
x
y
{\displaystyle {\frac {dy}{dx}}=5{\frac {y}{x}}+3{\frac {x}{y}}}
Let's use
v
=
y
x
{\displaystyle v={\frac {y}{x}}}
. Solve for
y
′
(
x
,
v
,
v
′
)
{\displaystyle y'(x,v,v')}
y
=
v
x
{\displaystyle y=vx\,}
d
y
d
x
=
v
+
x
d
v
d
x
{\displaystyle {\frac {dy}{dx}}=v+x{\frac {dv}{dx}}}
Now plug into the original equation
v
+
x
d
v
d
x
=
5
v
+
3
v
{\displaystyle v+x{\frac {dv}{dx}}=5v+{\frac {3}{v}}}
x
d
v
d
x
=
4
v
+
3
v
{\displaystyle x{\frac {dv}{dx}}=4v+{\frac {3}{v}}}
v
d
v
d
x
=
(
4
v
2
+
3
)
x
{\displaystyle v{\frac {dv}{dx}}={\frac {(4v^{2}+3)}{x}}}
Solve for v
v
d
v
4
v
2
+
3
=
d
x
x
{\displaystyle {\frac {vdv}{4v^{2}+3}}={\frac {dx}{x}}}
∫
v
d
v
4
v
2
+
3
=
∫
d
x
x
{\displaystyle \int {\frac {vdv}{4v^{2}+3}}=\int {\frac {dx}{x}}}
1
8
ln
(
4
v
2
+
3
)
=
ln
(
x
)
{\displaystyle {\frac {1}{8}}\ln(4v^{2}+3)=\ln(x)}
4
v
2
+
3
=
e
8
ln
(
x
)
{\displaystyle 4v^{2}+3=e^{8\ln(x)}\,}
4
v
2
+
3
=
e
ln
(
x
8
)
{\displaystyle 4v^{2}+3=e^{\ln(x^{8})}\,}
4
v
2
+
3
=
x
8
{\displaystyle 4v^{2}+3=x^{8}\,}
v
2
=
x
8
−
3
4
{\displaystyle v^{2}={\frac {x^{8}-3}{4}}}
Plug into the definition of v to get y .
y
=
v
x
{\displaystyle y=vx\,}
y
2
=
v
2
x
2
{\displaystyle y^{2}=v^{2}x^{2}\,}
y
2
=
x
10
−
3
x
2
4
{\displaystyle y^{2}={\frac {x^{10}-3x^{2}}{4}}}
We leave it in
y
2
{\displaystyle y^{2}}
form, since solving for y would lose information.
Note that there should be a constant of integration in the general solution. Adding it is left as an exercise.
d
y
d
x
=
x
sin
(
y
x
)
+
y
x
{\displaystyle {\frac {dy}{dx}}={\frac {x}{\sin({\frac {y}{x}})}}+{\frac {y}{x}}}
Lets use
v
=
y
x
{\displaystyle v={\frac {y}{x}}}
again. Solve for
y
′
(
x
,
v
,
v
′
)
{\displaystyle y'(x,v,v')}
y
=
v
x
{\displaystyle y=vx\,}
d
y
d
x
=
v
+
x
d
v
d
x
{\displaystyle {\frac {dy}{dx}}=v+x{\frac {dv}{dx}}}
Now plug into the original equation
v
+
x
d
v
d
x
=
x
sin
(
v
)
+
v
{\displaystyle v+x{\frac {dv}{dx}}={\frac {x}{\sin(v)}}+v}
x
d
v
d
x
=
x
sin
(
v
)
{\displaystyle x{\frac {dv}{dx}}={\frac {x}{\sin(v)}}}
sin
(
v
)
d
v
=
d
x
{\displaystyle \sin(v)dv=dx}
Solve for v :
∫
sin
(
v
)
d
v
=
∫
d
x
{\displaystyle \int \sin(v)dv=\int dx}
−
cos
v
=
x
+
C
{\displaystyle -\cos v=x+C\,}
v
=
arccos
(
−
x
+
C
)
{\displaystyle v=\arccos(-x+C)\,}
Use the definition of v to solve for y .
y
=
v
x
{\displaystyle y=vx\,}
y
=
arccos
(
−
x
+
C
)
x
{\displaystyle y=\arccos(-x+C)x\,}
An equation that is a function of a quotient of linear expressions
edit
Given the equation
d
y
+
f
(
a
1
x
+
b
1
y
+
c
1
a
2
x
+
b
2
y
+
c
2
)
d
x
=
0
{\displaystyle dy+f\left({\frac {a_{1}x+b_{1}y+c_{1}}{a_{2}x+b_{2}y+c_{2}}}\right)dx=0}
,
We can make the substitution x=x'+h and y=y'+k where h and k satisfy the system of linear equations:
a
1
h
+
b
1
k
+
c
1
=
0
{\displaystyle a_{1}h+b_{1}k+c_{1}=0}
a
2
h
+
b
2
k
+
c
2
=
0
{\displaystyle a_{2}h+b_{2}k+c_{2}=0}
Which turns it into a homogeneous equation of degree 0:
d
y
+
f
(
a
1
x
′
+
b
1
y
′
a
2
x
′
+
b
2
y
′
)
d
x
=
0
{\displaystyle dy+f\left({\frac {a_{1}x'+b_{1}y'}{a_{2}x'+b_{2}y'}}\right)dx=0}