Return to Exponential Growth
edit
Remember the population growth problem, where
d
P
d
t
=
(
B
−
D
)
P
{\displaystyle {\frac {dP}{dt}}=(B-D)P}
? Now that we can solve linear equations, we can also solve variations where a factor
f
(
t
)
{\displaystyle f(t)}
is added in. The new equation is
d
P
d
t
=
(
B
−
D
)
P
+
f
(
t
)
{\displaystyle {\frac {dP}{dt}}=(B-D)P+f(t)}
, and can be solved by the linear methods taught in the last section.
Lets say that 1000 people move into a city, in addition to the normal population growth. This can be interpreted by making
f
(
x
)
=
1000
{\displaystyle f(x)=1000}
. This gives us a linear differential equation to solve
d
P
d
t
=
k
P
+
1000
{\displaystyle {\frac {dP}{dt}}=kP+1000}
d
P
d
t
−
k
P
=
1000
{\displaystyle {\frac {dP}{dt}}-kP=1000}
Step 1: Find
e
∫
P
(
t
)
d
t
{\displaystyle e^{\int P(t)dt}}
∫
k
d
t
=
k
t
+
C
{\displaystyle \int kdt=kt+C}
e
∫
P
(
t
)
d
t
=
C
e
k
t
{\displaystyle e^{\int P(t)dt}=Ce^{kt}}
Letting C=1, we get
e
k
t
{\displaystyle e^{kt}}
Step 2: Multiply through
e
k
t
P
′
+
e
k
t
P
=
1000
e
k
t
{\displaystyle e^{kt}P'+e^{kt}P=1000e^{kt}}
Step 3: Recognize that the left hand is
d
d
t
e
∫
P
(
t
)
d
t
y
{\displaystyle {\frac {d}{dt}}e^{\int P(t)dt}y}
d
d
t
e
k
t
P
=
1000
e
k
t
{\displaystyle {\frac {d}{dt}}e^{kt}P=1000e^{kt}}
Step 4: Integrate
∫
(
d
d
t
e
k
t
P
)
d
t
=
∫
1000
e
k
t
d
t
{\displaystyle \int ({\frac {d}{dt}}e^{kt}P)dt=\int 1000e^{kt}dt}
e
k
t
P
=
1000
k
e
m
t
+
C
{\displaystyle e^{kt}P={\frac {1000}{k}}e^{mt}+C}
Step 5: Solve for y
P
=
1000
k
+
C
e
k
t
{\displaystyle P={\frac {1000}{k}}+{\frac {C}{e^{kt}}}}
See how the answer is a constant addition to the normal solution, as expected.
Lets say the government allows 10 animals to be killed a year. This makes
f
(
t
)
=
−
10
t
{\displaystyle f(t)=-10t}
. How does this effect the solution?
d
P
d
t
=
k
P
−
10
t
{\displaystyle {\frac {dP}{dt}}=kP-10t}
d
P
d
t
−
k
P
=
−
10
t
{\displaystyle {\frac {dP}{dt}}-kP=-10t}
Step 1: Find
e
∫
P
(
t
)
d
t
{\displaystyle e^{\int P(t)dt}}
∫
k
d
t
=
k
t
+
C
{\displaystyle \int kdt=kt+C}
e
∫
P
(
t
)
d
t
=
C
e
k
t
{\displaystyle e^{\int P(t)dt}=Ce^{kt}}
Letting C=1, we get
e
k
t
{\displaystyle e^{kt}}
Step 2: Multiply through
e
k
t
P
′
+
e
k
t
P
=
−
10
t
e
k
t
{\displaystyle e^{kt}P'+e^{kt}P=-10te^{kt}}
Step 3: Recognize that the left hand is
d
d
t
e
∫
P
(
t
)
d
t
y
{\displaystyle {\frac {d}{dt}}e^{\int P(t)dt}y}
d
d
t
e
k
t
P
=
−
10
t
e
k
t
{\displaystyle {\frac {d}{dt}}e^{kt}P=-10te^{kt}}
Step 4: Integrate
∫
(
d
d
t
e
k
t
P
)
d
t
=
∫
−
10
t
e
k
t
d
t
{\displaystyle \int ({\frac {d}{dt}}e^{kt}P)dt=\int -10te^{kt}dt}
e
k
t
P
=
−
10
(
k
x
−
1
)
e
k
x
k
2
+
C
{\displaystyle e^{kt}P={\frac {-10(kx-1)e^{kx}}{k^{2}}}+C}
Step 5: Solve for y
P
=
−
10
(
k
x
−
1
)
k
2
+
C
e
k
x
{\displaystyle P={\frac {-10(kx-1)}{k^{2}}}+{\frac {C}{e^{kx}}}}
Imagine we have a tank containing a solution of water and some other substance (say salt). We have water coming into the tank with a concentration
C
i
{\displaystyle C_{i}}
, at a rate of
R
i
{\displaystyle R_{i}}
. We also have water leaving the tank at a concentration
C
o
{\displaystyle C_{o}}
and rate
R
o
{\displaystyle R_{o}}
. We therefore have a change in concentration in the tank of
d
x
d
t
=
R
i
C
i
−
R
o
C
o
{\displaystyle {\frac {dx}{dt}}=R_{i}C_{i}-R_{o}C_{o}}
Thinking this through,
R
i
{\displaystyle R_{i}}
,
C
i
{\displaystyle C_{i}}
, and
R
o
{\displaystyle R_{o}}
are constants, but
C
o
{\displaystyle C_{o}}
depends on the current concentration of the tank, which is not constant. The current concentration is
x
V
{\displaystyle {\frac {x}{V}}}
where V is the volume of water in the tank. Unfortunately, the volume is changing based on how much water is in the tank. If the tank initially has
V
0
{\displaystyle V_{0}}
volume, the volume at time t is
V
(
t
)
=
V
0
+
t
(
r
i
−
r
o
)
{\displaystyle V(t)=V_{0}+t(r_{i}-r_{o})}
. This makes the final equation
x
′
=
R
i
C
i
−
R
o
x
V
0
+
t
(
R
i
−
R
o
)
{\displaystyle x'=R_{i}C_{i}-{\frac {R_{o}x}{V_{0}+t(R_{i}-R_{o})}}}
which is an obvious linear equation. Lets solve it.
x
′
+
R
o
x
V
0
+
t
(
R
i
−
R
o
)
=
R
i
C
i
{\displaystyle x'+{\frac {R_{o}x}{V_{0}+t(R_{i}-R_{o})}}=R_{i}C_{i}}
Step 1: Find
e
∫
P
(
t
)
d
t
{\displaystyle e^{\int P(t)dt}}
∫
R
o
V
0
+
t
(
R
i
−
R
o
)
=
R
o
l
n
(
(
R
i
−
R
o
)
t
+
V
0
)
R
i
−
R
o
+
C
{\displaystyle \int {\frac {R_{o}}{V_{0}+t(R_{i}-R_{o})}}={\frac {R_{o}ln((R_{i}-R_{o})t+V_{0})}{R_{i}-R_{o}}}+C}
e
∫
P
(
t
)
d
t
=
C
e
R
o
l
n
(
(
R
i
−
R
o
)
t
+
V
0
)
R
i
−
R
o
=
C
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
{\displaystyle e^{\int P(t)dt}=Ce^{\frac {R_{o}ln((R_{i}-R_{o})t+V_{0})}{R_{i}-R_{o}}}=C((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}}
Letting C=1, we get
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
{\displaystyle ((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}}
Step 2: Multiply through
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
x
′
+
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
R
o
x
V
0
+
t
(
R
i
−
R
o
)
=
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
R
i
C
i
{\displaystyle ((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}x'+((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}{\frac {R_{o}x}{V_{0}+t(R_{i}-R_{o})}}=((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}R_{i}C_{i}}
Step 3: Recognize that the left hand is
d
d
t
e
∫
P
(
t
)
d
t
x
{\displaystyle {\frac {d}{dt}}e^{\int P(t)dt}x}
d
d
t
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
x
=
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
R
i
C
i
{\displaystyle {\frac {d}{dt}}((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}x=((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}R_{i}C_{i}}
Step 4: Integrate
∫
(
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
x
)
d
t
=
∫
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
R
i
C
i
d
t
{\displaystyle \int (((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}x)dt=\int (R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}R_{i}C_{i}dt}
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
x
=
C
i
V
0
(
(
R
i
−
R
o
)
t
+
V
0
)
R
i
V
0
(
R
i
−
R
o
)
{\displaystyle ((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}x={\frac {C_{i}V_{0}((R_{i}-R_{o})t+V_{0})^{\frac {R_{i}}{V_{0}}}}{(R_{i}-R_{o})}}}
Step 5: Solve for y
x
=
C
i
V
0
(
(
R
i
−
R
o
)
t
+
V
0
)
R
i
V
0
(
R
i
−
R
o
)
(
(
R
i
−
R
o
)
t
+
V
0
)
R
o
R
i
−
R
o
{\displaystyle x={\frac {C_{i}V_{0}((R_{i}-R_{o})t+V_{0})^{\frac {R_{i}}{V_{0}}}}{(R_{i}-R_{o})((R_{i}-R_{o})t+V_{0})^{\frac {R_{o}}{R_{i}-R_{o}}}}}}
Ugly, isn't it. Most of the time when dealing with real world mixture problems, you'll plug in much earlier and use numbers, which makes it easier to deal with.