a x × a y = a ( x + y ) {\displaystyle a^{x}\times a^{y}=a^{(x+y)}}
a x ÷ a y = a ( x − y ) {\displaystyle a^{x}\div a^{y}=a^{(x-y)}}
d d x e x = e x {\displaystyle {\frac {d}{dx}}e^{x}=e^{x}}
d d x e k x = k e k x {\displaystyle {\frac {d}{dx}}e^{kx}=ke^{kx}}
∫ e k x d x = 1 k e k x + c {\displaystyle \int e^{kx}dx={\frac {1}{k}}e^{kx}+c}
d d x l o g e x = 1 x , x > 0 {\displaystyle {\frac {d}{dx}}log_{e}x={\frac {1}{x}},x>0}
∫ 1 x d x = l o g e x + c {\displaystyle \int {\frac {1}{x}}dx=log_{e}x+c}
d d x l o g e ( a x ) = 1 x {\displaystyle {\frac {d}{dx}}log_{e}(ax)={\frac {1}{x}}}
d d x l o g e ( a x + b ) = a a x + b {\displaystyle {\frac {d}{dx}}log_{e}(ax+b)={\frac {a}{ax+b}}}
d d x l o g e f ( x ) = f ′ ( x ) f ( x ) {\displaystyle {\frac {d}{dx}}log_{e}f(x)={\frac {f'(x)}{f(x)}}}
∫ f ′ ( x ) f ( x ) d x = l o g e f ( x ) {\displaystyle \int {\frac {f'(x)}{f(x)}}dx=log_{e}f(x)}