Construct the equilateral triangle
△
A
B
D
{\displaystyle \triangle ABD}
on
A
B
¯
{\displaystyle {\overline {AB}}}
.
Bisect an angle on
∠
A
D
B
{\displaystyle \angle ADB}
using the segment
D
E
¯
{\displaystyle {\overline {DE}}}
.
Let C be the intersection point of
D
E
¯
{\displaystyle {\overline {DE}}}
and
A
B
¯
{\displaystyle {\overline {AB}}}
.
Both
A
C
¯
{\displaystyle {\overline {AC}}}
and
C
B
¯
{\displaystyle {\overline {CB}}}
are equal to half of
A
B
¯
{\displaystyle {\overline {AB}}}
.
A
D
¯
{\displaystyle {\overline {AD}}}
and
B
D
¯
{\displaystyle {\overline {BD}}}
are sides of the equilateral triangle
△
A
B
D
{\displaystyle \triangle ABD}
.
Hence,
A
D
¯
{\displaystyle {\overline {AD}}}
equals
B
D
¯
{\displaystyle {\overline {BD}}}
.
The segment
D
C
¯
{\displaystyle {\overline {DC}}}
equals to itself.
Due to the construction
∠
A
D
E
{\displaystyle \angle ADE}
and
∠
E
D
B
{\displaystyle \angle EDB}
are equal.
The segments
D
E
¯
{\displaystyle {\overline {DE}}}
and
D
C
¯
{\displaystyle {\overline {DC}}}
lie on each other.
Hence,
∠
A
D
E
{\displaystyle \angle ADE}
equals to
∠
A
D
C
{\displaystyle \angle ADC}
and
∠
E
D
B
{\displaystyle \angle EDB}
equals to
∠
C
D
B
{\displaystyle \angle CDB}
.
Due to the Side-Angle-Side congruence theorem the triangles
△
A
D
C
{\displaystyle \triangle ADC}
and
△
C
D
B
{\displaystyle \triangle CDB}
congruent.
Hence,
A
C
¯
{\displaystyle {\overline {AC}}}
and
C
B
¯
{\displaystyle {\overline {CB}}}
are equal.
Since
A
B
¯
{\displaystyle {\overline {AB}}}
is the sum of
A
C
¯
{\displaystyle {\overline {AC}}}
and
C
B
¯
{\displaystyle {\overline {CB}}}
, each of them equals to its half.