File:Julia set for fc(z) = z*z+c where c = -0.749998153581339 +0.001569040474910*I; t = 0.49975027919634618290.png

Original file(2,000 × 2,000 pixels, file size: 316 KB, MIME type: image/png)

Summary

Description
English: Julia set for fc(z) = z*z+c where c = -0.749998153581339 +0.001569040474910*I. Internal angle in turns is t = 0.49975027919634618290
Date
Source Own work
Author Adam majewski
Other versions

Algorithm

Program checks every pixel of image, iterates and divides them to 3 groups:

  • escaping to infinity = exterior
  • attracting to finite attractor = interior
  • Unknown Pixels = not escaping and not attracting

Tests:

  • simple bailout test : if (cabs(z) > 2.0)
  • test for the interior : if (cabs(z-a) <= InternalSiegelDiscRadius) where a is a alfa fixed point which is a center of the Siegel disc


// ***************************************************************************************************************************
// ************************** binary Escape time *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBET(complex double z){

 	int nMax = iterMax;
  	//unsigned char iColor = iColorOfUnknown;
  	// double d; 
	int n;

  	for (n=0; n < nMax; n++){ //forward iteration
		// test for the exterior: bailout test 
    		if (cabs(z) > 2.0) {
    			NoOfExteriorPixels += 1;
    			return iColorOfExterior; // escaping set = exterior : LSM/J
    			}
    		
    		
    		// test for interior 
    		if (cabs(z-a) <= InternalSiegelDiscRadius) {// falls into finite attractor = interior
    			NoOfInteriorPixels += 1;
    			return iColorOfInterior;
    			}
    	 	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  	}
  
  
  
  
  	NoOfUnknownPixels += 1;
  	return iColorOfUnknown;


}

C source code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  console program in c programing language 
  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc d.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >a.txt

  ----------------------
  
 real	0m19,809s
user	2m26,763s
sys	0m0,161s


  

*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP

/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 10000;	//  
// The size of array has to be a positive constant integer 
static unsigned int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array


static const double ZxMin = -1.7; //-2.0;	//-0.05;
static const double ZxMax =  1.7; // 2.0;	//0.75;
static const double ZyMin = -1.7; //-2.0;	//-0.1;
static const double ZyMax =  1.7; //2.0;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
double complex c;		// parameter of function fc(z)=z^2 + c
double complex a; // alfa fixed point

//int Period = 2;


static unsigned long int iterMax = 1000000;	//iHeight*100;

static double ER = 1E60;		// EscapeRadius for bailout test 
double EscapeRadius=1000000; // = ER big !!!!
// SAC/J
double lnER; // ln(ER)
int i_skip = 2; // exclude (i_skip+1) elements from average
unsigned char s = 7; // stripe density

double BoundaryWidth = 3.0; // % of image width  
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;

double InternalSiegelDiscRadius; //https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/siegel
double ExternalSiegelDiscRadius;

/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 245;
unsigned char iColorOfInterior = 55;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;



int NoOfExteriorPixels = 0;
int NoOfInteriorPixels = 0;
int NoOfUnknownPixels = 0;


/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double GiveZy (int iy) {
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double GiveZ( int ix, int iy){
  double Zx = GiveZx(ix);
  double Zy = GiveZy(iy);
	
  return Zx + Zy*I;
	
	


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************



// bailout test
// z escapes when 
// abs(z)> ER or cabs2(z)> ER2 
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time

int Escapes(complex double z){
 // here target set (trap) is the exterior  circle with radsius = ER ( EscapeRadius) 
  // with ceter = origin z= 0
  // on the Riemann sphere it is a circle with point at infinity as a center  
   
  if (cabs(z)>ER) return 1;
  return 0;
}





// compute alfa fixed point
// https://en.wikipedia.org/wiki/Periodic_points_of_complex_quadratic_mappings#Period-1_points_(fixed_points)
complex double GiveAlfa(complex double c)
{
	// d=1-4c 
	// alfa = (1-sqrt(d))/2 
	return (1.0-csqrt(1.0 - 4.0*c))/2.0 ;

}


// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/siegel

double GiveInternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
  int i; /* iteration */
  double complex z =0.0; /* critical point */
  
  /* center of Siegel disc  = a */
  
  double d; // distance
  double dMin = 2.0;

  
  for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
    {
      z = z*z + c; 
      /* */
      
     d = cabs(z - a);
     if (d < dMin) dMin = d; /* smallest distance */
    }
    
  return dMin;
}


double GiveExternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
  int i; /* iteration */
  double complex z =0.0; /* critical point */
  
  /* center of Siegel disc  = a */
  
  double d; // distance
  double dMax = 0.0;

  
  for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
    {
      z = z*z + c; 
      /* */
      
     d = cabs(z - a);
     if (d > dMax) dMax = d; /* smallest distance */
    }
    
  return dMax;
}

double GiveMaxDistanceFromCenter(complex double z, complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
  int i; /* iteration */
  
  
  /* center of Siegel disc  = a */
  
  double d; // distance
  double dMax = 0.0;

  
  for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
    {
      z = z*z + c; 
      /* */
      
     d = cabs(z - a);
     if (d > dMax) dMax = d; /* smallest distance */
    }
    
  return dMax;
}


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}


// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  // boundaries are in D  array ( global var )
 
  // clear D array
  memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
 
  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for(iY=1;iY<iyMax-1;++iY){ 
    for(iX=1;iX<ixMax-1;++iX){ 
      Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
      Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {D[i]=255;} /* background */
      else {D[i]=0;}  /* boundary */
    }
  }
 
   
 
  return 0;
}



// copy from Source to Destination
int CopyBoundaries(unsigned char S[],  unsigned char D[])
{
 
  unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i; /* index of 1D array  */
 
 
  //printf("copy boundaries from S array to D array \n");
  for(iY=1;iY<iyMax-1;++iY)
    for(iX=1;iX<ixMax-1;++iX)
      {i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
 
 
 
  return 0;
}





// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ


  
  int nMax = iterMax;
  complex double dz = 1.0; //  is first derivative with respect to z.
  double distance;
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	
    	if (cabs(z) > 1e60 || cabs(dz)> 1e60) break; // big values 
    	if (cabs(z-a)< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
  			
    dz = 2.0*z * dz; 
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
  if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
  // else
  
  return iColorOfExterior;

 
}



// plots raster point (ix,iy) 
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfDEMJ(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfDEMJ (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("DEM/J  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfDEMJ(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfUnknown(complex double z){



  
  int nMax = 20; // very low value
  
  double cabsz;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	
    	if (cabs(z) > 10000000000*ER )  return iColorOfExterior; // big values
    	if (cabs(z-a) < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
  			
    
    z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  //printf("found \n");
  return iColorOfUnknown;

 
}



// plots raster point (ix,iy) 
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfUnknown(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfUnknown (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	printf("compute image of Unknown\n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("Unknown %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfUnknown(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfLSM(complex double z){

 	int nMax = iterMax;
  	unsigned char iColor = iColorOfUnknown;
  	double d; 
	int n;

  	for (n=0; n < nMax; n++){ //forward iteration
	
    		if (cabs(z) > 2.0) return 231+ 14*(n % 2); // escaping set = exterior : LSM/J
    		d = cabs(z-a);
    		if (d <= InternalSiegelDiscRadius) // falls into finite attractor = interior
    			{
    				//d = GiveMaxDistanceFromCenter(z,c,a);
    				//return  255-255.0 * d/ExternalSiegelDiscRadius; 
    				return iColorOfInterior;
    			
    			
    			}
    			
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfLSM(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfLSM (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("LSM  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfLSM(A, ix, iy);	//  
  }

  return 0;
}




// ***************************************************************************************************************************
// ************************** Interior : orbits*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfOrbits(complex double z){

 	int nMax = iterMax;
  	unsigned char iColor = iColorOfUnknown;
  	double d; 
	int n;

  	for (n=0; n < nMax; n++){ //forward iteration
	
    		if (cabs(z) > 2.0) return iColorOfExterior; // escaping set = exterior : LSM/J
    		d = cabs(z-a);
    		if (d <= InternalSiegelDiscRadius) // falls into finite attractor = interior
    			{
    				d = GiveMaxDistanceFromCenter(z,c,a);
    				return  255-255.0 * d/ExternalSiegelDiscRadius; 
    				//return iColorOfInterior;
    			
    			
    			}
    			
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  
  
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfOrbits (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfOrbits(z);
  A[i] = iColor ;		// 
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImageOfOrbits (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("Orbits  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfOrbits(A, ix, iy);	//  
  }

  return 0;
}


// ***************************************************************************************************************************
// ************************** binary Escape time *****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBET(complex double z){

 	int nMax = iterMax;
  	//unsigned char iColor = iColorOfUnknown;
  	// double d; 
	int n;

  	for (n=0; n < nMax; n++){ //forward iteration
		// test for the exterior: bailout test 
    		if (cabs(z) > 2.0) {
    			NoOfExteriorPixels += 1;
    			return iColorOfExterior; // escaping set = exterior : LSM/J
    			}
    		
    		
    		// test for interior 
    		if (cabs(z-a) <= InternalSiegelDiscRadius) {// falls into finite attractor = interior
    			NoOfInteriorPixels += 1;
    			return iColorOfInterior;
    			}
    	 	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  	}
  
  
  
  
  	NoOfUnknownPixels += 1;
  	return iColorOfUnknown;


}



// plots raster point (ix,iy) 
int DrawPointOfBET (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBET(z);
  A[i] = iColor ;		// 
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImageOfBET (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 
  
  // 
  NoOfExteriorPixels = 0;
  NoOfInteriorPixels = 0;
  NoOfUnknownPixels = 0;

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("BET  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBET(A, ix, iy);	//  
  }

  // local info
  // BET, number of pixels : exterior = 52 809 244 , interior = 13 749 273, unknown = 108 305 , all = 66 666 822
  
  
  printf("BET, number of pixels : exterior = %d , interior = %d, unknown = %d , all = %d \n", NoOfExteriorPixels, NoOfInteriorPixels, NoOfUnknownPixels, NoOfExteriorPixels+NoOfInteriorPixels + NoOfUnknownPixels );
  //
  NoOfExteriorPixels = 0;
  NoOfInteriorPixels = 0;
  NoOfUnknownPixels = 0;
  return 0;
}





// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfBD(complex double z){

 int nMax = 255;
  double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	
    	if (cabs(z) > ER) break; // esacping
    	if (cabs(z-a)< PixelWidth) break; // fails into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (creal(z)>0.0) 
  	iColor = 255; 
  	else iColor = 0;
  
  
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("BSD  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfBD(A, ix, iy);	//  
  }

  return 0;
}





// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************

unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
 int nMax = 7;
  //double cabsz;
  unsigned char iColor;
	
  int n;

  for (n=0; n < nMax; n++){ //forward iteration
	//cabsz = cabs(z);
    	//if (cabsz > ER) break; // esacping
    	//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
  			
   
     	z = z*z +c ; /* forward iteration : complex quadratic polynomial */ 
  }
  
  if (cabs(z) > 2.0)
  	{ // exterior
  		if (creal(z)>0.0) 
  			iColor = 255; 
  			else iColor = 0;
  	}
  	else iColor = iColorOfInterior;
  	
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfMBD(z);
  A[i] = iColor ;		// interior
  
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfBD (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("MBD  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfMBD(A, ix, iy);	//  
  }

  return 0;
}




// ***********************************************************************************************
//*************************************** SAC/J **************************************************
// *****************************************************************************************
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/stripeAC
// SAC = Stripe Average Coloring

//

// the addend function
// input : complex number z
// output : double number t 
double Give_t(double complex z){

  return 0.5+0.5*sin(s*carg(z));

}

/*
  input :
  - complex number
  - intege
  output = average
 
*/
double Give_Arg(double complex z , int iMax)
{
  int i=0; // iteration 
   
   
  //double complex Z= 0.0; // initial value for iteration Z0
  double A = 0.0; // A(n)
  double prevA = 0.0; // A(n-1)
  double R; // =radius = cabs(Z)
  double d; // smooth iteration count
  double complex dz = 1.0; // first derivative with respect to z
  double de; // Distance Estimation from DEM/J  
   
    
  // iteration = computing the orbit
  for(i=0;i<iMax;i++)
    { 
    
      dz = 2.0 * z * dz ; 
      z = z*z + c; // https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/qpolynomials
      
      if (i>i_skip) A += Give_t(z); // 
      
      R = cabs(z);
      // if(R > EscapeRadius) break; // exterior of M set
  	if (R > 1e60 || cabs(dz)> 1e60) break; // prevent NAN 	 	
      prevA = A; // save value for interpolation
        
    } // for(i=0
   
   
  if (i == iMax) 
    A = -1.0; // interior 
  else { // exterior
    de = 2 * R * log(R) / cabs(dz);
    if (de < distanceMax) A = FP_ZERO; //  boundary
    else {
      // computing interpolated average
      A /= (i - i_skip) ; // A(n)
      prevA /= (i - i_skip - 1) ; // A(n-1) 
      // smooth iteration count
      d = i + 1 + log(lnER/log(R))/M_LN2;
      d = d - (int)d; // only fractional part = interpolation coefficient
      // linear interpolation
      A = d*A + (1.0-d)*prevA;
     }   
  }
    
  return A;  
}
 
 
 
 
 
unsigned char ComputeColorOfSAC(complex double z){

  unsigned char iColor;
  double arg;
  
   
   
  	arg = Give_Arg( z, 2500); //   N in wiki 
	
   	// color is proportional to arg 
	if (arg < 0.0)
           
		iColor = 0;  // interior                        
    
		else //  
			{if (arg == FP_ZERO) 
     				iColor = 255; // boundary     
        			else iColor = (unsigned char) (255 - 255*arg );// exterior
      			}
      
    
  return iColor;


}



// plots raster point (ix,iy) 
int DrawPointOfSAC (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  unsigned char iColor;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ(ix,iy);
  iColor = ComputeColorOfSAC(z);
  A[i] = iColor ;		//   
  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int DrawImagerOMfSAC (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  	//printf("compute image \n");
 	// for all pixels of image 
	#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
  	for (iy = iyMin; iy <= iyMax; ++iy){
    		printf ("SAC/J :  %d from %d \r", iy, iyMax);	//info 
    		for (ix = ixMin; ix <= ixMax; ++ix)
      			DrawPointOfSAC(A, ix, iy);	//  
  }

  return 0;
}



 
 
 
 
 
 
 
 
 
 
 
 
 
 








// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
  
  FILE * fp;
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name [100]; /* name of file */
  snprintf(name, sizeof name, "%.1f", k); /*  */
  char *filename =strncat(name,".pgm", 4);
  
  
  
  // save image to the pgm file 
  fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode 
  fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue);  // write header to the file
  fwrite(A,iSize,1,fp);  // write array with image data bytes to the file in one step 
  fclose(fp); 
  
  // info 
  printf("File %s saved ", filename);
  if (comment == NULL || strlen(comment) ==0)  
    printf("\n");
  else printf (". Comment = %s \n", comment); 

  return 0;
}







int PrintInfoAboutProgam()
{

  
  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
  
  
  printf ("iSize = %d\n", iSize);
  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %f \n", PixelWidth);
  
  
  printf("for DEM/J \n");
  if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
	printf("Max distance from exterior to the boundary =  distanceMax = %.16f = %f pixels\n",  distanceMax, BoundaryWidth); 
  
  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  //
  printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is diplayed in the console 
  return 0;
}





int PrintInfoAboutPoint(complex double z){

	//unsigned int ix, iy;		// pixel coordinate
	// to do 
	
	double arg;
	unsigned char iColor;
	
	arg = Give_Arg( z, 2500); //   N in wiki
	iColor = ComputeColorOfSAC(z);
	
	printf ("parameter z = ( %.16f ; %.16f ) \n", creal(z), cimag(z));
	printf ("SAC/J : arg = %.16f ; iColor = %d  \n", arg, iColor);
	
	

	return z; 

}


// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int setup ()
{

  printf ("setup start ");
  c = -0.749998153581339 +0.001569040474910*I; //    t = 0.49975027919634618290 
  a = GiveAlfa(c);
  
  
  
	
  /* 2D array ranges */
  
  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...
	
   
	
  
  //ER2 = ER * ER; // for numerical optimisation in iteration
  lnER = log(EscapeRadius); // ln(ER) 
  
   	
  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));
  edge = malloc (iSize * sizeof (unsigned char));
  edge2 = malloc (iSize * sizeof (unsigned char));
  	
  if (data == NULL || edge == NULL || edge2 == NULL){
    fprintf (stderr, " Could not allocate memory");
    return 1;
  }

  
 	
  
  BoundaryWidth = 6.0*iWidth/2000.0  ; //  measured in pixels ( when iWidth = 2000) ; such function is stable when iWidth is changing
  distanceMax = BoundaryWidth*PixelWidth; // distance to the boundary from exterior
  
  InternalSiegelDiscRadius = GiveInternalSiegelDiscRadius(c,a);
  ExternalSiegelDiscRadius = GiveExternalSiegelDiscRadius(c,a);
  
  
  printf ("and end\n");
	
  return 0;

} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int end(){


  printf (" allways free memory (deallocate )  to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);
  free(edge);
  free(edge2);
  PrintInfoAboutProgam();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int main () {
  setup ();
  
  
   
  /*
  DrawImagerOfDEMJ(data);
  SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
  
  
  
  DrawImagerOfBD(data);
  SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
  
  DrawImagerOMfBD(data);
  SaveArray2PGMFile (data, iWidth+0.4, "MBD/J");
  
  ComputeBoundaries(data, edge2);
  SaveArray2PGMFile (edge2, iWidth+0.5, "boundaries of MBD/J");
  
  DrawImagerOfLSM(data);
  SaveArray2PGMFile (data, iWidth+0.6, "LSM/J");
  
  ComputeBoundaries(data, edge);
  SaveArray2PGMFile (edge, iWidth+0.7, "boundaries of LSM/J");
  
  DrawImageOfOrbits(data);
  SaveArray2PGMFile (data, iWidth+0.8, "Orbits");
  
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+0.8, "orbits + boundaries of LSM/J ");
  */
  DrawImageOfBET(data);
  SaveArray2PGMFile (data, iWidth+0.9, "BET = binary escape time");
  /*
  CopyBoundaries(edge, data);
  SaveArray2PGMFile (data, iWidth+1.0, "BET + boundaries of LSM/J ");
  
  
  CopyBoundaries(edge, edge2);
  SaveArray2PGMFile (edge2, iWidth+0.8, "boundaries of LSM/J and MBD");
  
  
  DrawImagerOfUnknown(data);
  SaveArray2PGMFile (data, iWidth+0.9, "Unknown : boundary and slow dynamics");
  
  
  DrawImagerOMfSAC(data);
  SaveArray2PGMFile (data, iWidth+1.0, "SAC/J + DEM/J");
  */
  
  
  //PrintInfoAboutPoint(ZxMin+ZyMax*I);
  
  end();

  return 0;
}

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Julia set for fc(z) = z*z+c where c = -0.749998153581339 +0.001569040474910*I; t = 0.49975027919634618290

Items portrayed in this file

depicts

20 January 2019

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:59, 20 January 2019Thumbnail for version as of 16:59, 20 January 20192,000 × 2,000 (316 KB)Soul windsurferUser created page with UploadWizard

The following page uses this file:

Metadata