The following is a list of the important equations from the text, arranged by subject. For more information about these equations, including the meaning of each variable and symbol, the uses of these functions, or the derivations of these equations, see the relevant pages in the main text.
Fundamental Equations
edit
e
j
ω
=
cos
(
ω
)
+
j
sin
(
ω
)
{\displaystyle e^{j\omega }=\cos(\omega )+j\sin(\omega )}
(
a
∗
b
)
(
t
)
=
∫
−
∞
∞
a
(
τ
)
b
(
t
−
τ
)
d
τ
{\displaystyle (a*b)(t)=\int _{-\infty }^{\infty }a(\tau )b(t-\tau )d\tau }
L
[
f
(
t
)
∗
g
(
t
)
]
=
F
(
s
)
G
(
s
)
{\displaystyle {\mathcal {L}}[f(t)*g(t)]=F(s)G(s)}
L
[
f
(
t
)
g
(
t
)
]
=
F
(
s
)
∗
G
(
s
)
{\displaystyle {\mathcal {L}}[f(t)g(t)]=F(s)*G(s)}
[Characteristic Equation]
|
A
−
λ
I
|
=
0
{\displaystyle |A-\lambda I|=0}
A
v
=
λ
v
{\displaystyle Av=\lambda v}
w
A
=
λ
w
{\displaystyle wA=\lambda w}
d
B
=
20
log
(
C
)
{\displaystyle dB=20\log(C)}
u
(
t
)
=
{
0
,
t
<
0
1
,
t
≥
0
{\displaystyle u(t)=\left\{{\begin{matrix}0,&t<0\\1,&t\geq 0\end{matrix}}\right.}
r
(
t
)
=
t
u
(
t
)
{\displaystyle r(t)=tu(t)}
[Unit Parabolic Function]
p
(
t
)
=
1
2
t
2
u
(
t
)
{\displaystyle p(t)={\frac {1}{2}}t^{2}u(t)}
[Position Error Constant]
K
p
=
lim
s
→
0
G
(
s
)
{\displaystyle K_{p}=\lim _{s\to 0}G(s)}
K
p
=
lim
z
→
1
G
(
z
)
{\displaystyle K_{p}=\lim _{z\to 1}G(z)}
[Velocity Error Constant]
K
v
=
lim
s
→
0
s
G
(
s
)
{\displaystyle K_{v}=\lim _{s\to 0}sG(s)}
K
v
=
lim
z
→
1
(
z
−
1
)
G
(
z
)
{\displaystyle K_{v}=\lim _{z\to 1}(z-1)G(z)}
[Acceleration Error Constant]
K
a
=
lim
s
→
0
s
2
G
(
s
)
{\displaystyle K_{a}=\lim _{s\to 0}s^{2}G(s)}
K
a
=
lim
z
→
1
(
z
−
1
)
2
G
(
z
)
{\displaystyle K_{a}=\lim _{z\to 1}(z-1)^{2}G(z)}
[General System Description]
y
(
t
)
=
∫
−
∞
∞
g
(
t
,
r
)
x
(
r
)
d
r
{\displaystyle y(t)=\int _{-\infty }^{\infty }g(t,r)x(r)dr}
[Convolution Description]
y
(
t
)
=
x
(
t
)
∗
h
(
t
)
=
∫
−
∞
∞
x
(
τ
)
h
(
t
−
τ
)
d
τ
{\displaystyle y(t)=x(t)*h(t)=\int _{-\infty }^{\infty }x(\tau )h(t-\tau )d\tau }
[Transfer Function Description]
Y
(
s
)
=
H
(
s
)
X
(
s
)
{\displaystyle Y(s)=H(s)X(s)}
Y
(
z
)
=
H
(
z
)
X
(
z
)
{\displaystyle Y(z)=H(z)X(z)}
x
′
(
t
)
=
A
x
(
t
)
+
B
u
(
t
)
{\displaystyle x'(t)=Ax(t)+Bu(t)}
y
(
t
)
=
C
x
(
t
)
+
D
u
(
t
)
{\displaystyle y(t)=Cx(t)+Du(t)}
C
[
s
I
−
A
]
−
1
B
+
D
=
H
(
s
)
{\displaystyle C[sI-A]^{-1}B+D=\mathbf {H} (s)}
C
[
z
I
−
A
]
−
1
B
+
D
=
H
(
z
)
{\displaystyle C[zI-A]^{-1}B+D=\mathbf {H} (z)}
[Transfer Matrix Description]
Y
(
s
)
=
H
(
s
)
U
(
s
)
{\displaystyle \mathbf {Y} (s)=\mathbf {H} (s)\mathbf {U} (s)}
Y
(
z
)
=
H
(
z
)
U
(
z
)
{\displaystyle \mathbf {Y} (z)=\mathbf {H} (z)\mathbf {U} (z)}
M
=
y
o
u
t
y
i
n
=
∑
k
=
1
N
M
k
Δ
k
Δ
{\displaystyle M={\frac {y_{out}}{y_{in}}}=\sum _{k=1}^{N}{\frac {M_{k}\Delta \ _{k}}{\Delta \ }}}
[Closed-Loop Transfer Function]
H
c
l
(
s
)
=
K
G
p
(
s
)
1
+
K
G
p
(
s
)
G
b
(
s
)
{\displaystyle H_{cl}(s)={\frac {KGp(s)}{1+KGp(s)Gb(s)}}}
[Open-Loop Transfer Function]
H
o
l
(
s
)
=
K
G
p
(
s
)
G
b
(
s
)
{\displaystyle H_{ol}(s)=KGp(s)Gb(s)}
[Characteristic Equation]
F
(
s
)
=
1
+
H
o
l
{\displaystyle F(s)=1+H_{ol}}
F
(
s
)
=
L
[
f
(
t
)
]
=
∫
0
∞
f
(
t
)
e
−
s
t
d
t
{\displaystyle F(s)={\mathcal {L}}[f(t)]=\int _{0}^{\infty }f(t)e^{-st}dt}
[Inverse Laplace Transform]
f
(
t
)
=
L
−
1
{
F
(
s
)
}
=
1
2
π
∫
c
−
i
∞
c
+
i
∞
e
s
t
F
(
s
)
d
s
{\displaystyle f(t)={\mathcal {L}}^{-1}\left\{F(s)\right\}={1 \over {2\pi }}\int _{c-i\infty }^{c+i\infty }e^{st}F(s)\,ds}
F
(
j
ω
)
=
F
[
f
(
t
)
]
=
∫
0
∞
f
(
t
)
e
−
j
ω
t
d
t
{\displaystyle F(j\omega )={\mathcal {F}}[f(t)]=\int _{0}^{\infty }f(t)e^{-j\omega t}dt}
[Inverse Fourier Transform]
f
(
t
)
=
F
−
1
{
F
(
j
ω
)
}
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
e
−
j
ω
t
d
ω
{\displaystyle f(t)={\mathcal {F}}^{-1}\left\{F(j\omega )\right\}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }F(j\omega )e^{-j\omega t}d\omega }
F
∗
(
s
)
=
L
∗
[
f
(
t
)
]
=
∑
i
=
0
∞
f
(
i
T
)
e
−
s
i
T
{\displaystyle F^{*}(s)={\mathcal {L}}^{*}[f(t)]=\sum _{i=0}^{\infty }f(iT)e^{-siT}}
X
(
z
)
=
Z
{
x
[
n
]
}
=
∑
i
=
−
∞
∞
x
[
n
]
z
−
n
{\displaystyle X(z)={\mathcal {Z}}\left\{x[n]\right\}=\sum _{i=-\infty }^{\infty }x[n]z^{-n}}
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
=
1
2
π
j
∮
C
X
(
z
)
z
n
−
1
d
z
{\displaystyle x[n]=Z^{-1}\{X(z)\}={\frac {1}{2\pi j}}\oint _{C}X(z)z^{n-1}dz\ }
X
(
z
,
m
)
=
Z
(
x
[
n
]
,
m
)
=
∑
n
=
−
∞
∞
x
[
n
+
m
−
1
]
z
−
n
{\displaystyle X(z,m)={\mathcal {Z}}(x[n],m)=\sum _{n=-\infty }^{\infty }x[n+m-1]z^{-n}}
x
(
∞
)
=
lim
s
→
0
s
X
(
s
)
{\displaystyle x(\infty )=\lim _{s\to 0}sX(s)}
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
{\displaystyle x[\infty ]=\lim _{z\to 1}(z-1)X(z)}
x
(
0
)
=
lim
s
→
∞
s
X
(
s
)
{\displaystyle x(0)=\lim _{s\to \infty }sX(s)}
[General State Equation Solution]
x
(
t
)
=
e
A
t
−
t
0
x
(
t
0
)
+
∫
t
0
t
e
A
(
t
−
τ
)
B
u
(
τ
)
d
τ
{\displaystyle x(t)=e^{At-t_{0}}x(t_{0})+\int _{t_{0}}^{t}e^{A(t-\tau )}Bu(\tau )d\tau }
x
[
n
]
=
A
n
x
[
0
]
+
∑
m
=
0
n
−
1
A
n
−
1
−
m
B
u
[
n
]
{\displaystyle x[n]=A^{n}x[0]+\sum _{m=0}^{n-1}A^{n-1-m}Bu[n]}
[General Output Equation Solution]
y
(
t
)
=
C
e
A
t
−
t
0
x
(
t
0
)
+
C
∫
t
0
t
e
A
(
t
−
τ
)
B
u
(
τ
)
d
τ
+
D
u
(
t
)
{\displaystyle y(t)=Ce^{At-t_{0}}x(t_{0})+C\int _{t_{0}}^{t}e^{A(t-\tau )}Bu(\tau )d\tau +Du(t)}
y
[
n
]
=
C
A
n
x
[
0
]
+
∑
m
=
0
n
−
1
C
A
n
−
1
−
m
B
u
[
n
]
+
D
u
[
n
]
{\displaystyle y[n]=CA^{n}x[0]+\sum _{m=0}^{n-1}CA^{n-1-m}Bu[n]+Du[n]}
[Time-Variant General Solution]
x
(
t
)
=
ϕ
(
t
,
t
0
)
x
(
t
0
)
+
∫
t
0
t
ϕ
(
τ
,
t
0
)
B
(
τ
)
u
(
τ
)
d
τ
{\displaystyle x(t)=\phi (t,t_{0})x(t_{0})+\int _{t_{0}}^{t}\phi (\tau ,t_{0})B(\tau )u(\tau )d\tau }
x
[
n
]
=
ϕ
[
n
,
n
0
]
x
[
t
0
]
+
∑
m
=
n
0
n
ϕ
[
n
,
m
+
1
]
B
[
m
]
u
[
m
]
{\displaystyle x[n]=\phi [n,n_{0}]x[t_{0}]+\sum _{m=n_{0}}^{n}\phi [n,m+1]B[m]u[m]}
[Impulse Response Matrix]
G
(
t
,
τ
)
=
{
C
(
τ
)
ϕ
(
t
,
τ
)
B
(
τ
)
if
t
≥
τ
0
if
t
<
τ
{\displaystyle G(t,\tau )=\left\{{\begin{matrix}C(\tau )\phi (t,\tau )B(\tau )&{\mbox{ if }}t\geq \tau \\0&{\mbox{ if }}t<\tau \end{matrix}}\right.}
G
[
n
]
=
{
C
A
k
−
1
N
if
k
>
0
0
if
k
≤
0
{\displaystyle G[n]=\left\{{\begin{matrix}CA^{k-1}N&{\mbox{ if }}k>0\\0&{\mbox{ if }}k\leq 0\end{matrix}}\right.}
1
+
K
G
(
s
)
H
(
s
)
=
0
{\displaystyle 1+KG(s)H(s)=0}
1
+
K
G
H
¯
(
z
)
=
0
{\displaystyle 1+K{\overline {GH}}(z)=0}
∠
K
G
(
s
)
H
(
s
)
=
180
∘
{\displaystyle \angle KG(s)H(s)=180^{\circ }}
∠
K
G
H
¯
(
z
)
=
180
∘
{\displaystyle \angle K{\overline {GH}}(z)=180^{\circ }}
N
a
=
P
−
Z
{\displaystyle N_{a}=P-Z}
ϕ
k
=
(
2
k
+
1
)
π
P
−
Z
{\displaystyle \phi _{k}=(2k+1){\frac {\pi }{P-Z}}}
σ
0
=
∑
P
−
∑
Z
P
−
Z
{\displaystyle \sigma _{0}={\frac {\sum _{P}-\sum _{Z}}{P-Z}}}
[Breakaway Point Locations]
G
(
s
)
H
(
s
)
d
s
=
0
{\displaystyle {\frac {G(s)H(s)}{ds}}=0}
or
G
H
¯
(
z
)
d
z
=
0
{\displaystyle {\frac {{\overline {GH}}(z)}{dz}}=0}
M
A
+
A
T
M
=
−
N
{\displaystyle MA+A^{T}M=-N}
Controllers and Compensators
edit
D
(
s
)
=
K
p
+
K
i
s
+
K
d
s
{\displaystyle D(s)=K_{p}+{K_{i} \over s}+K_{d}s}
D
(
z
)
=
K
p
+
K
i
T
2
[
z
+
1
z
−
1
]
+
K
d
[
z
−
1
T
z
]
{\displaystyle D(z)=K_{p}+K_{i}{\frac {T}{2}}\left[{\frac {z+1}{z-1}}\right]+K_{d}\left[{\frac {z-1}{Tz}}\right]}