Calculus/Hyperbolic functions

Theory

edit
 
The unit hyperbola has a sector with an area half of the hyperbolic angle

The independent variable of a hyperbolic function is called a hyperbolic angle. Just as the circular functions sine and cosine can be seen as projections from the unit circle to the axes, so the hyperbolic functions sinh and cosh are projections from a unit hyperbola to the axes.

Definitions

edit

The hyperbolic functions are defined in analogy with the trigonometric functions:

 
 
 

The reciprocal functions csch, sech, coth are defined from these functions:

 
 
 

Some simple identities

edit
 
 
 
 

Derivatives of hyperbolic functions

edit

 

 

 

 

 

 

Principal values of the main hyperbolic functions

edit

There is no problem in defining principal braches for sinh and tanh because they are injective. We choose one of the principal branches for cosh.

 
 
 

Inverse hyperbolic functions

edit

With the principal values defined above, the definition of the inverse functions is immediate:

 
 
 

We can define   ,   and   similarly.

We can also write these inverses using the logarithm function,

 
 
 

These identities can simplify some integrals.

Derivatives of inverse hyperbolic functions

edit

 

 

 

 

 

 

Transcendental Functions

edit

Hyperbolic functions are examples of transcendental functions -- they are not algebraic functions. They include trigonometric, inverse trigonometric, logarithmic and exponential functions.