Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Abstract Algebra/Group Theory/Group/Inverse is Unique
Language
Watch
Edit
<
Abstract Algebra
|
Group Theory
|
Group
Theorem
edit
In a group, each element only has one inverse.
Proof
edit
0. Choose
g
∈
G
{\displaystyle {\color {OliveGreen}g}\in G}
. Then,
inverse
g
1
−1
of
g
is also in G.
1. Assume
g
has a
different
inverse
g
2
−1
in G
2.
(
g
1
−
1
∗
g
)
∗
g
2
−
1
=
g
1
−
1
∗
(
g
∗
g
2
−
1
)
{\displaystyle ({\color {BrickRed}g_{1}^{-1}}\ast {\color {OliveGreen}g})\ast {\color {Purple}g_{2}^{-1}}={\color {BrickRed}g_{1}^{-1}}\ast ({\color {OliveGreen}g}\ast {\color {Purple}g_{2}^{-1}})}
∗
{\displaystyle \ast }
is associative on G
3.
e
G
∗
g
2
−
1
=
g
1
−
1
∗
e
G
{\displaystyle e_{G}\ast {\color {Purple}g_{2}^{-1}}={\color {BrickRed}g_{1}^{-1}}\ast e_{G}}
g
1
-1
and
g
2
-1
are inverses of
g
on G
(usage 3)
4.
g
2
−
1
=
g
1
−
1
{\displaystyle {\color {Purple}g_{2}^{-1}}={\color {BrickRed}g_{1}^{-1}}}
, contradicting 1.
e
G
is identity of G
(usage 3)