Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Abstract Algebra/Group Theory/Group/Cancellation
Language
Watch
Edit
<
Abstract Algebra
|
Group Theory
|
Group
Contents
1
Theorem
2
Proof
3
Diagrams
4
Usage
5
Notice
Theorem
edit
Let G be a Group.
1.
∀
g
,
a
,
b
∈
G
:
(
g
∗
a
=
g
∗
b
)
→
(
a
=
b
)
{\displaystyle \forall \;g,a,b\in G:(g\ast a=g\ast b)\rightarrow (a=b)}
2.
∀
g
,
a
,
b
∈
G
:
(
a
∗
g
=
b
∗
g
)
→
(
a
=
b
)
{\displaystyle \forall \;g,a,b\in G:(a\ast g=b\ast g)\rightarrow (a=b)}
Proof
edit
0. Choose
g
,
a
,
b
∈
G
{\displaystyle {\color {OliveGreen}g},a,b\in G}
such that
g
∗
a
=
g
∗
b
{\displaystyle {\color {OliveGreen}g}\ast a={\color {OliveGreen}g}\ast b}
1.
g
−
1
∈
G
{\displaystyle {\color {BrickRed}g^{-1}}\in G}
definition of inverse of
g
in G
(usage 1)
2.
g
−
1
∗
(
g
∗
a
)
=
g
−
1
∗
(
g
∗
b
)
{\displaystyle {\color {BrickRed}g^{-1}}\ast ({\color {OliveGreen}g}\ast a)={\color {BrickRed}g^{-1}}\ast ({\color {OliveGreen}g}\ast b)}
0.
3.
(
g
−
1
∗
g
)
∗
a
=
(
g
−
1
∗
g
)
∗
b
{\displaystyle ({\color {BrickRed}g^{-1}}\ast {\color {OliveGreen}g})\ast a=({\color {BrickRed}g^{-1}}\ast {\color {OliveGreen}g})\ast b}
∗
{\displaystyle \ast }
is associative in G
4.
e
G
∗
a
=
e
G
∗
b
{\displaystyle e_{G}\ast a=e_{G}\ast b}
g
-1
is inverse of
g
(usage 3)
5.
a
=
b
{\displaystyle a=b\,}
e
G
is identity of G
(usage 3)
Diagrams
edit
if a*g = b*g...
a = a*g*g
-1
b*g*g
-1
= b
then a = b.
Usage
edit
if a, b, x are in the same group, and x*a = x*b, then a = b
Notice
edit
a, b, and g have to be all in the same group.
∗
{\displaystyle \ast }
has to be the binary operator of the group.
G has to be a group.