A-level Mathematics/CIE/Pure Mathematics 1/Functions

Notation & Terms

edit

Function Notation

edit

There are two main ways of describing a function: with parenthesis notaton, e.g.  , or with mapping notation, e.g.  . These both describe what the function does.

Definitions

edit
Function
A function is a mapping from an input set to an output set. For example, the function   maps the input   to the output   by multiplying it by 3
Domain
The domain is the set of all valid inputs. e.g., the function   has the domain  .
Range
The range is the set of all possible outputs. e.g., the function   has the range  
One-to-one function
A one-to-one function is a function which maps each input to exactly one output, and each output corresponds to exactly one input. For instance,   is not a one-to-one function, but   is a one-to-one function.
Inverse function
An inverse function is a function that does the opposite of another function. For example, the function   has an inverse function  .
Composition of functions
Composition of functions is where the output of one function is input into another function. For example: if   and  , the composed function   and the composed function  . Note that for two arbitrary functions   and  , the composed functions   and   are not equal except for some special cases.

Finding the Range

edit
 
The function y=1/x approaches zero as x goes to infinity.

To find the range of a function, we need to find the highest and lowest values that the function can take.

Example 1

edit

Find the range of  

The lowest value that   can take is 1, so one bound of the range is  .

The highest value that   can take is infinite, so the other bound of the range is the value that   approaches as   goes to infinity, which is 0.

So the range of the function   is  . This range can also be expressed in interval notation as  

 
The vertex is where the graph reaches its lowest point.

Example 2

edit

Find the range of  

A quadratic function always has a turning point, known as its vertex. This determines its range. The vertex can be found by completing the square.

 

Completing the square provides the coordinates of the vertex,  .

Since the vertex is the lowest point of this function, we can express the range as  , which can be expressed as  

Composing Functions

edit

A composite function is a function which is created by taking the output of one function as the input of another function.

e.g. Find the composite function   when   and  .

 

It is important to note that a composite function can only be created if the range of the inner function is within the domain of the outer function.

Inverse Functions

edit

An inverse function is the reverse of a given function, such as how   has the inverse  .

However, not all functions have an inverse. Only one-to-one functions have an inverse.

Determining whether a function is one-to-one

edit

The formal way of determining whether a function is one-to-one is to prove that  

e.g. Prove that   is one-to-one.

 

Finding the inverse

edit

To find the inverse of a function, substitute   for   in the function definition then rearrange the variables to make   the subject of the formula.

e.g. Find the inverse of  

 

Graphing Inverse Functions

edit
 
A graph of a function and its inverse

If you plot a function and its inverse on the same graph, it is apparent that the graph of the inverse is the same as the graph of the function reflected across the line  .

The reason for this is that the graph   is equivalent to  

Transforming Functions

edit

A transformation of a function changes the position, size, or shape of the function's graph.


 

To do:
Illustrate these transformations


Translation
Translation changes the position of the function's graph.   can move the function vertically and   can move the function horizontally.
Scaling
Scaling is where the function changes in size.   changes the size vertically and   changes the size horizontally. If   is negative, the function will also be reflected.
Reflection
Reflection is where the function is mirrored across a given line. This can be achieved with   for vertical reflection and   for horizontal reflection.


Quadratics · Coordinate Geometry