A-level Mathematics/CIE/Pure Mathematics 1/Coordinate Geometry
The Equation of a Line
editCalculations involving lines
editDistance between two points
editThe distance between two points is given by the formula where is the difference in x-values between the two points and is the difference in y-values between the two points.
This formula can also be seen as applying the Pythagorean theorem to the points, where the differences in x-values and y-values form two sides of a right-angled triangle.
Midpoint of two points
editThe midpoint is the point which is exactly halfway between two points. The coordinates of the midpoint are given by where and are the coordinates of the two points.
e.g. The midpoint between and is
You may notice that this expression states that the midpoint's x-coordinate is the average of the x-coordinates of the points, and its y-coordinate is the average of the points' y-coordinates. Essentially, this means that the midpoint is the average of the two points.
Gradients
editThe gradient of a line is determined by the ratio where is the change in y-value and is the change in x-value.
This can also be expressed as when finding the gradient of a line between two points.
e.g. The gradient of a line that passes through and has gradient
Intersecting lines
editWhen two lines intersect, the point of intersection is where the two lines cross. The point of intersection is thus on both lines, meaning that it can be found using simultaneous equations.
e.g. The lines and intersect. Find the point of intersection.
Parallel lines
editParallel lines always have the same gradient, and do not intersect.
e.g. The lines and are parallel.
Sometimes we'll need to find a line which is parallel to a given line and passes through a given point.
e.g. Find the equation of a line parallel to that passes through
Perpendicular lines
editPerpendicular lines are at right angles to one another. The product of the gradients of two perpendicular lines is always -1.
e.g. The lines and are perpendicular.
Sometimes we'll need to find a perpendicular line that goes through a specific point.
e.g. Find the equation of the line perpendicular to that passes through the origin.
Different forms of the equation of a line
editThere are three main ways to write an equation of a line:
Finding the equation of a line from a point and the gradient
editThe equation of a line can be found using a point and the gradient using the second equation followed by rearranging the equation to the form .
e.g. A line with gradient goes through the point . Find its equation.
Finding the equation of a line from two points
editWhen given two points, we can find the gradient using . Using this gradient, the same method can be used as for a point and the gradient.
e.g. A line travels through the points and . Find the equation of the line.
The Equation of a Circle
editA circle consists of all points that are a given distance from its centre. The distance between two points can be defined using the Pythagorean theorem . Thus, the equation of a circle centred at the origin is given by where is the radius of the circle.
e.g. A circle centred at the origin with radius would have the equation
If the circle is not centred at the origin, we can translate this equation to a different point. Thus, the equation becomes where are the coordinates of the centre.
e.g. A circle centred at with radius would have the equation
Interactions between Lines & Circles
editWhen given a problem where a line and a circle intersect, it is useful to use a substitution method of solving simultaneous equations.
e.g. The line intersects the circle . Find the coordinates of these intersection points
Interactions between Lines & Quadratics
editWhen a quadratic and a line intersect, we can again use substitution to find the points of intersection.
e.g. The line intersects the quadratic . Find the points of intersection.
In some cases, we need to find a constant that ensures there is only one point of intersection. In said cases, we should use the discriminant.
e.g. Find the value such that the line is tangent to