Roots of polynomials
edit
The relations between the roots and the coefficients of a polynomial equation; the occurrence of the non-real roots in conjugate pairs when the coefficients of the polynomials are real.
Square root of minus one
edit
−
1
=
i
{\displaystyle {\sqrt {-1}}=i\,\!}
i
2
=
−
1
{\displaystyle i^{2}=-1\,\!}
Square root of any negative real number
edit
−
2
=
2
×
−
1
=
2
×
−
1
=
2
×
i
=
i
2
{\displaystyle {\sqrt {-2}}={\sqrt {2\times -1}}={\sqrt {2}}\times {\sqrt {-1}}={\sqrt {2}}\times i=i{\sqrt {2}}\,\!}
−
n
=
i
n
{\displaystyle {\sqrt {-n}}=i{\sqrt {n}}\,\!}
z
=
x
+
i
y
{\displaystyle z=x+iy\,\!}
where
x
{\displaystyle x\,\!}
and
y
{\displaystyle y\,\!}
are real numbers
Modulus of a complex number
edit
|
z
|
=
x
2
+
y
2
{\displaystyle |z|={\sqrt {x^{2}+y^{2}}}\,\!}
Argument of a complex number
edit
The argument of
z
{\displaystyle z\,\!}
is the angle between the positive x-axis and a line drawn between the origin and the point in the complex plane (see [1] )
tan
θ
=
y
x
{\displaystyle \tan {\theta }={\frac {y}{x}}\,\!}
arg
z
=
θ
{\displaystyle \arg {z}=\theta \,\!}
arg
z
=
tan
−
1
(
y
x
)
{\displaystyle \arg {z}=\tan ^{-1}{\left({\frac {y}{x}}\right)}\,\!}
x
+
i
y
=
z
=
|
z
|
e
i
θ
=
(
x
2
+
y
2
)
e
i
θ
{\displaystyle x+iy=z=|z|e^{i\theta }=\left({\sqrt {x^{2}+y^{2}}}\right)e^{i\theta }\,\!}
e
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle e^{i\theta }=\cos {\theta }+i\sin {\theta }\,\!}
z
=
|
z
|
e
i
θ
=
|
z
|
(
cos
θ
+
i
sin
θ
)
{\displaystyle z=|z|e^{i\theta }=|z|\left(\cos {\theta }+i\sin {\theta }\right)\,\!}
e
i
θ
=
z
|
z
|
=
x
+
i
y
x
2
+
y
2
{\displaystyle e^{i\theta }={\frac {z}{|z|}}={\frac {x+iy}{\sqrt {x^{2}+y^{2}}}}\,\!}
In general, if
z
1
=
a
1
+
i
b
1
{\displaystyle z_{1}=a_{1}+ib_{1}}
and
z
2
=
a
2
+
i
b
2
{\displaystyle z_{2}=a_{2}+ib_{2}}
,
z
1
+
z
2
=
(
a
1
+
a
2
)
+
i
(
b
1
+
b
2
)
{\displaystyle z_{1}+z_{2}=(a_{1}+a_{2})+i(b_{1}+b_{2})}
z
1
−
z
2
=
(
a
1
−
a
2
)
+
i
(
b
1
−
b
2
)
{\displaystyle z_{1}-z_{2}=(a_{1}-a_{2})+i(b_{1}-b_{2})}
z
1
z
2
=
a
1
a
2
−
b
1
b
2
+
i
(
a
2
b
1
+
a
1
b
2
)
{\displaystyle z_{1}z_{2}=a_{1}a_{2}-b_{1}b_{2}+i(a_{2}b_{1}+a_{1}b_{2})}
If
z
=
x
+
i
y
, then
z
∗
=
x
−
i
y
{\displaystyle {\mbox{If }}z=x+iy{\mbox{, then }}z^{*}=x-iy\,\!}
z
z
∗
=
|
z
|
2
{\displaystyle zz^{*}=|z|^{2}\,\!}
z
1
z
2
=
z
1
z
2
z
2
∗
z
2
∗
=
z
1
z
2
∗
|
z
2
|
2
{\displaystyle {\frac {z_{1}}{z_{2}}}={\frac {z_{1}}{z_{2}}}{\frac {z_{2}^{*}}{z_{2}^{*}}}={\frac {z_{1}z_{2}^{*}}{|z_{2}|^{2}}}}
If
z
1
=
(
r
1
,
θ
1
)
{\displaystyle z_{1}=(r_{1},{\mbox{ }}\theta _{1})}
and
z
2
=
(
r
2
,
θ
2
)
{\displaystyle z_{2}=(r_{2},{\mbox{ }}\theta _{2})}
then
z
1
z
2
=
(
r
1
r
2
,
θ
1
+
θ
2
)
{\displaystyle z_{1}z_{2}=(r_{1}r_{2},{\mbox{ }}\theta _{1}+\theta _{2})}
, with the proviso that
2
π
{\displaystyle 2\pi }
may have to be added to, or subtracted from,
θ
1
+
θ
2
{\displaystyle \theta _{1}+\theta _{2}}
if
θ
1
+
θ
2
{\displaystyle \theta _{1}+\theta _{2}}
is outside the permitted range for
θ
{\displaystyle \theta }
.
If
z
1
=
(
r
1
,
θ
1
)
{\displaystyle z_{1}=(r_{1},{\mbox{ }}\theta _{1})}
and
z
2
=
(
r
2
,
θ
2
)
{\displaystyle z_{2}=(r_{2},{\mbox{ }}\theta _{2})}
then
z
1
z
2
=
(
r
1
r
2
,
θ
1
−
θ
2
)
{\displaystyle {\frac {z_{1}}{z_{2}}}=\left({\frac {r_{1}}{r_{2}}},{\mbox{ }}\theta _{1}-\theta _{2}\right)}
, with the same proviso regarding the size of the angle
θ
1
−
θ
2
{\displaystyle \theta _{1}-\theta _{2}}
.
Equating real and imaginary parts
edit
If
a
+
i
b
=
c
+
i
d
, where
a
,
b
,
c
and
d
are real, then
a
=
c
and
b
=
d
{\displaystyle {\mbox{If }}a+ib=c+id{\mbox{, where }}a{\mbox{, }}b{\mbox{, }}c{\mbox{ and }}d{\mbox{ are real, then }}a=c{\mbox{ and }}b=d\,\!}
Coordinate geometry on Argand diagrams
edit
If the complex number
z
1
{\displaystyle z_{1}}
is represented by the point
A
{\displaystyle A}
, and the complex number
z
2
{\displaystyle z_{2}}
is represented by the point
B
{\displaystyle B}
in an Argand diagram, then
|
z
2
−
z
1
|
=
A
B
{\displaystyle |z_{2}-z_{1}|=AB\,\!}
, and
arg
(
z
2
−
z
1
)
{\displaystyle \arg {(z_{2}-z_{1})}}
is the angle between
A
B
→
{\displaystyle {\overrightarrow {AB}}}
and the positive direction of the x -axis.
Loci on Argand diagrams
edit
|
z
|
=
k
{\displaystyle |z|=k}
represents a circle with centre
O
{\displaystyle O}
and radius
k
{\displaystyle k}
|
z
−
z
1
|
=
k
{\displaystyle |z-z_{1}|=k}
represents a circle with centre
z
1
{\displaystyle z_{1}}
and radius
k
{\displaystyle k}
|
z
−
z
1
|
=
|
z
−
z
2
|
{\displaystyle |z-z_{1}|=|z-z_{2}|}
represents a straight line — the perpendicular bisector of the line joining the points
z
1
{\displaystyle z_{1}}
and
z
2
{\displaystyle z_{2}}
arg
z
=
α
{\displaystyle {\mbox{arg }}z=\alpha }
represents the half line through
O
{\displaystyle O}
inclined at an angle
α
{\displaystyle \alpha }
to the positive direction of
O
x
{\displaystyle Ox}
arg
(
z
−
z
1
)
=
α
{\displaystyle {\mbox{arg}}(z-z_{1})=\alpha }
represents the half line through the point
z
1
{\displaystyle z_{1}}
inclined at an angle
α
{\displaystyle \alpha }
to the positive direction of
O
x
{\displaystyle Ox}
De Moivre's theorem and its applications
edit
(
cos
θ
+
i
sin
θ
)
n
=
cos
n
θ
+
i
sin
n
θ
{\displaystyle \left(\cos {\theta }+i\sin {\theta }\right)^{n}=\cos {n\theta }+i\sin {n\theta }\,\!}
De Moivre's theorem for integral n
edit
z
+
1
z
=
2
cos
θ
{\displaystyle z+{\frac {1}{z}}=2\cos {\theta }}
z
−
1
z
=
2
i
sin
θ
{\displaystyle z-{\frac {1}{z}}=2i\sin {\theta }}
If
z
=
r
(
cos
θ
+
i
sin
θ
)
,
{\displaystyle {\mbox{If }}z=r(\cos {\theta }+i\sin {\theta }){\mbox{, }}\,\!}
then
z
=
r
e
i
θ
{\displaystyle {\mbox{then }}z=re^{i\theta }\,\!}
and
z
n
=
(
r
e
i
θ
)
n
=
r
n
e
n
i
θ
{\displaystyle {\mbox{and }}z^{n}=\left(re^{i\theta }\right)^{n}=r^{n}e^{ni\theta }\,\!}
cos
θ
=
e
i
θ
+
e
−
i
θ
2
{\displaystyle \cos {\theta }={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
sin
θ
=
e
i
θ
−
e
−
i
θ
2
i
{\displaystyle \sin {\theta }={\frac {e^{i\theta }-e^{-i\theta }}{2i}}}
The cube roots of unity
edit
The cube roots of unity are
1
{\displaystyle 1}
,
w
{\displaystyle w}
and
w
2
{\displaystyle w^{2}}
, where
w
3
=
1
{\displaystyle w^{3}=1\,\!}
1
+
w
+
w
2
=
0
{\displaystyle 1+w+w^{2}=0\,\!}
and the non-real roots are
−
1
±
i
3
2
{\displaystyle {\frac {-1\pm i{\sqrt {3}}}{2}}}
The nth roots of unity
edit
The equation
z
n
=
1
{\displaystyle z^{n}=1}
has roots
z
=
e
2
k
π
i
n
where
k
=
0
,
1
,
2
,
…
,
(
n
−
1
)
{\displaystyle z=e^{\frac {2k\pi i}{n}}{\mbox{ where }}k=0,1,2,\dots ,(n-1)}
The roots of zn = α where α is a non-real number
edit
The equation
z
n
=
α
{\displaystyle z^{n}=\alpha }
, where
α
=
r
e
i
θ
{\displaystyle \alpha =re^{i\theta }}
, has roots
z
=
r
1
n
e
i
(
θ
+
2
k
π
)
n
where
k
=
0
,
1
,
2
,
…
,
(
n
−
1
)
{\displaystyle z=r^{\frac {1}{n}}e^{\frac {i(\theta +2k\pi )}{n}}{\mbox{ where }}k=0,1,2,\dots ,(n-1)}
Hyperbolic functions
edit
Definitions of hyperbolic functions
edit
sinh
x
=
e
x
−
e
−
x
2
{\displaystyle \sinh {x}={\frac {e^{x}-e^{-x}}{2}}}
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle \cosh {x}={\frac {e^{x}+e^{-x}}{2}}}
tanh
x
=
sinh
x
cosh
x
{\displaystyle \tanh {x}={\frac {\sinh {x}}{\cosh {x}}}}
cosech
x
=
1
sinh
x
{\displaystyle \operatorname {cosech} {x}={\frac {1}{\sinh {x}}}}
sech
=
1
cosh
x
{\displaystyle \operatorname {sech} ={\frac {1}{\cosh {x}}}}
coth
x
=
1
tanh
x
{\displaystyle \coth {x}={\frac {1}{\tanh {x}}}}
Hyperbolic identities
edit
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh ^{2}{x}-\sinh ^{2}{x}=1\,\!}
1
−
tanh
2
x
=
sech
2
x
{\displaystyle 1-\tanh ^{2}{x}=\operatorname {sech} ^{2}{x}\,\!}
coth
2
x
−
1
=
cosech
2
x
{\displaystyle \coth ^{2}{x}-1=\operatorname {cosech} ^{2}{x}\,\!}
sinh
(
x
+
y
)
=
sinh
x
cosh
y
+
cosh
x
sinh
y
{\displaystyle \sinh {(x+y)}=\sinh {x}\cosh {y}+\cosh {x}\sinh {y}\,\!}
cosh
(
x
+
y
)
=
cosh
x
cosh
y
+
sinh
x
sinh
y
{\displaystyle \cosh {(x+y)}=\cosh {x}\cosh {y}+\sinh {x}\sinh {y}\,\!}
sinh
2
x
=
2
sinh
x
cosh
y
{\displaystyle \sinh {2x}=2\sinh {x}\cosh {y}\,\!}
cosh
2
x
=
cosh
2
x
+
sinh
2
x
=
2
cosh
2
x
−
1
=
1
+
2
sinh
2
x
{\displaystyle {\begin{aligned}\cosh {2x}&=\cosh ^{2}{x}+\sinh ^{2}{x}\\&=2\cosh ^{2}{x}-1\\&=1+2\sinh ^{2}{x}\end{aligned}}\,\!}
Osborne's rule states that:
to change a trigonometric function into its corresponding hyperbolic function, where a product of two sines appears, change the sign of the corresponding hyperbolic form
Note that Osborne's rule is an aide mémoire , not a proof.
Differentiation of hyperbolic functions
edit
d
d
x
sinh
x
=
cosh
x
{\displaystyle {\frac {d}{dx}}\sinh {x}=\cosh {x}}
d
d
x
cosh
x
=
sinh
x
{\displaystyle {\frac {d}{dx}}\cosh {x}=\sinh {x}}
d
d
x
tanh
x
=
sech
2
x
{\displaystyle {\frac {d}{dx}}\tanh {x}=\operatorname {sech} ^{2}{x}}
d
d
x
sinh
k
x
=
k
cosh
k
x
{\displaystyle {\frac {d}{dx}}\sinh {kx}=k\cosh {kx}}
d
d
x
cosh
k
x
=
k
sinh
k
x
{\displaystyle {\frac {d}{dx}}\cosh {kx}=k\sinh {kx}}
d
d
x
tanh
k
x
=
k
sech
2
k
x
{\displaystyle {\frac {d}{dx}}\tanh {kx}=k\operatorname {sech} ^{2}{kx}}
Integration of hyperbolic functions
edit
∫
sinh
x
d
x
=
cosh
x
+
c
{\displaystyle \int \sinh {x}\,dx=\cosh {x}+c}
∫
cosh
x
d
x
=
sinh
x
+
c
{\displaystyle \int \cosh {x}\,dx=\sinh {x}+c}
∫
sech
2
x
d
x
=
tanh
x
+
c
{\displaystyle \int \operatorname {sech} ^{2}{x}\,dx=\tanh {x}+c}
∫
tanh
x
d
x
=
ln
cosh
x
+
c
{\displaystyle \int \tanh {x}\,dx=\ln {\cosh {x}}+c}
∫
coth
x
d
x
=
ln
sinh
x
+
c
{\displaystyle \int \coth {x}\,dx=\ln {\sinh {x}}+c}
Inverse hyperbolic functions
edit
sinh
−
1
x
=
ln
(
x
+
x
2
+
1
)
{\displaystyle \sinh ^{-1}{x}=\ln {\left(x+{\sqrt {x^{2}+1}}\right)}}
cosh
−
1
x
=
ln
(
x
+
x
2
−
1
)
{\displaystyle \cosh ^{-1}{x}=\ln {\left(x+{\sqrt {x^{2}-1}}\right)}}
tanh
−
1
x
=
1
2
ln
(
1
+
x
1
−
x
)
{\displaystyle \tanh ^{-1}{x}={\frac {1}{2}}\ln {\left({\frac {1+x}{1-x}}\right)}}
Derivatives of inverse hyperbolic functions
edit
d
d
x
sinh
−
1
x
=
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\sinh ^{-1}{x}={\frac {1}{\sqrt {1+x^{2}}}}}
d
d
x
cosh
−
1
x
=
1
x
2
−
1
{\displaystyle {\frac {d}{dx}}\cosh ^{-1}{x}={\frac {1}{\sqrt {x^{2}-1}}}}
d
d
x
tanh
−
1
x
=
1
1
−
x
2
{\displaystyle {\frac {d}{dx}}\tanh ^{-1}{x}={\frac {1}{1-x^{2}}}}
d
d
x
sinh
−
1
x
a
=
1
a
2
+
x
2
{\displaystyle {\frac {d}{dx}}\sinh ^{-1}{\frac {x}{a}}={\frac {1}{\sqrt {a^{2}+x^{2}}}}}
d
d
x
cosh
−
1
x
a
=
1
x
2
−
a
2
{\displaystyle {\frac {d}{dx}}\cosh ^{-1}{\frac {x}{a}}={\frac {1}{\sqrt {x^{2}-a^{2}}}}}
d
d
x
tanh
−
1
x
a
=
1
a
2
−
x
2
{\displaystyle {\frac {d}{dx}}\tanh ^{-1}{\frac {x}{a}}={\frac {1}{a^{2}-x^{2}}}}
Integrals which integrate to inverse hyperbolic functions
edit
∫
1
a
2
+
x
2
d
x
=
sinh
−
1
x
a
+
c
{\displaystyle \int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,dx=\sinh ^{-1}{\frac {x}{a}}+c}
∫
1
x
2
−
a
2
d
x
=
cosh
−
1
x
a
+
c
{\displaystyle \int {\frac {1}{\sqrt {x^{2}-a^{2}}}}\,dx=\cosh ^{-1}{\frac {x}{a}}+c}
∫
1
a
2
−
x
2
d
x
=
tanh
−
1
x
a
+
c
{\displaystyle \int {\frac {1}{a^{2}-x^{2}}}\,dx=\tanh ^{-1}{\frac {x}{a}}+c}
Arc length and area of surface of revolution
edit
Calculation of the arc length of a curve and the area of a surface using Cartesian or parametric coordinates
edit
s
=
∫
x
1
x
2
1
+
(
d
y
d
x
)
2
d
x
=
∫
t
1
t
2
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
{\displaystyle s=\int _{x_{1}}^{x_{2}}{\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}dx=\int _{t_{1}}^{t_{2}}{\sqrt {\left({\frac {dx}{dt}}\right)^{2}+\left({\frac {dy}{dt}}\right)^{2}}}dt}
S
=
2
π
∫
x
1
x
2
y
1
+
(
d
y
d
x
)
2
d
x
=
2
π
∫
t
1
t
2
y
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
{\displaystyle S=2\pi \int _{x_{1}}^{x_{2}}y{\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}dx=2\pi \int _{t_{1}}^{t_{2}}y{\sqrt {\left({\frac {dx}{dt}}\right)^{2}+\left({\frac {dy}{dt}}\right)^{2}}}dt}
The AQA's free textbook [2]