100 = a b 0 therefore a = 100 200 = a b 1 therefore b = 200 100 = 2 {\displaystyle {\begin{matrix}100=ab^{0}&{\mbox{therefore}}&a=100\\200=ab^{1}&{\mbox{therefore}}&b={\frac {200}{100}}=2\end{matrix}}}
a b 3 = 100 × 2 3 = 800 people {\displaystyle ab^{3}=100\times 2^{3}=800{\mbox{ people}}}
a b 1 2 = 100 × 2 = 141.41 ⋯ ≈ 141 people {\displaystyle ab^{\frac {1}{2}}=100\times {\sqrt {2}}=141.41\dots \approx 141{\mbox{ people}}}
a b 7 4 = 100 × 2 7 4 = 336.35 ⋯ ≈ 336 people {\displaystyle ab^{\frac {7}{4}}=100\times {\sqrt[{4}]{2^{7}}}=336.35\dots \approx 336{\mbox{ people}}}
a b 0 = 35200 therefore a = 35200 b = 1.06 {\displaystyle {\begin{matrix}ab^{0}=35200&{\mbox{therefore}}&a=35200\\&&b=1.06\end{matrix}}}
a b 10 = 35200 × 1.06 10 = 63037.8 ⋯ ≈ 63038 {\displaystyle ab^{10}=35200\times 1.06^{10}=63037.8\dots \approx 63038}
a b 1 2 = 35200 × 1.06 = 36240.61 ≈ 36241 {\displaystyle ab^{\frac {1}{2}}=35200\times {\sqrt {1.06}}=36240.61\approx 36241}
a b − 10 = 35200 × 1 1.06 10 = 19655.49 ≈ 19655 {\displaystyle ab^{-10}=35200\times {\frac {1}{1.06^{10}}}=19655.49\approx 19655}
a = 440 {\displaystyle a=440\,}
a b 12 = 2 a b 12 = 2 b = 2 12 {\displaystyle {\begin{matrix}ab^{12}=2a\\b^{12}=2\\b={\sqrt[{12}]{2}}\end{matrix}}}
a b − 9 = 440 × 1 2 9 12 = 261.62 ≈ 262 Hz {\displaystyle ab^{-9}=440\times {\frac {1}{\sqrt[{12}]{2^{9}}}}=261.62\approx 262{\mbox{ Hz}}}
a b x = 600 log a + x log b = log 600 log 440 + x log 2 12 = log 600 x log 2 12 = log 600 − log 440 x = log 600 − log 440 log 2 12 = 5.36 ⋯ ≈ 5 whole semitones {\displaystyle {\begin{matrix}ab^{x}=600\\\log a+x\log b=\log 600\\\log 440+x\log {\sqrt[{12}]{2}}=\log 600\\x\log {\sqrt[{12}]{2}}=\log 600-\log 440\\x={\frac {\log 600-\log 440}{\log {\sqrt[{12}]{2}}}}=5.36\dots \approx 5{\mbox{ whole semitones}}\end{matrix}}}
log y = 0.4 + 0.6 x y = 10 0.4 + 0.6 x y = 2.51 × 3.98 x {\displaystyle {\begin{matrix}\log y=0.4+0.6x\\y=10^{0.4+0.6x}\\y=2.51\times 3.98^{x}\end{matrix}}}