User:Inconspicuum/Physics (A Level)/Metals
There are several physical properties of metals you need to know about:
Electrical Properties
editMetals consist of positive metal ions in 'sea' of free (delocalized) electrons. This means that the electrons are totally free to move around the lattice, in and between the atoms. This is what holds the entire metal structure together and gives metals their strength. It also gives metals the ability to conduct an electric current, as electric current is the movement of charge. This could not happen with ionic bonding, where particles are charged and all electrons stay in place. It can also not happen with covalent bonding where the electrons stay in the bond.
As thermal energy is given to a metal, the electrons move more quickly. However, the lattice also vibrates more quickly. As the electrons' movement is slowed by the lattice the conductivity of the material decreases with temperature.
Mechanical Properties
editThis 'sea' of free electrons can also be described as a glue that does not dry. The negatively charged electrons have an electro-static attraction to the positively charged metal ions. This is what holds the entire metal structure together and gives metals their strength, i.e. the ability of the material to resist coming apart.
It also means that metals will change shape without coming apart completely (breaking). This is known as plastic deformation, which is when a material changes permanently (unlike elastic deformation) and also does not fracture (like when a glass fibre is stretched too far). Pure metals are usually incredibly ductile and malleable and can worked into a wide variety of shapes. The sea allows the atoms to move past each other. Atoms can move out of their place on the lattice. Other atoms can then go and fill that place. Entire layers of atoms in a crystal lattice can slip past one another, and the free electrons flowing between will keep them stuck together [see dislocations]. The glue allows movement of atoms without breaking the metallic bond, i.e. the electrostatic attraction between the free-flowing electrons and the positive ions.
Of course, metals do eventually fracture, however, they tend to show necking first.
This could not happen in a material where the strength comes from covalent bonds because the electrons need to be in specific positions. When ionic bonds or covalent bonds are broken, they do not generally go back together. Materials held together entirely by covalent or ionic bonds tend to be very brittle. The bonding in metals is not directional and not permanent. This gives metals their strength and plasticity, their most useful mechanical properties.
List of Mechanical Properties
editStiffness
As the electrostatic attraction between the sea of electrons and metal ions hold the layers quite strongly, metals resist deformation quite well. This is especially true with alloys, where atoms of different sizes prevent the layers slipping past each other.
Ductile
Since the bonding is non-directional and non-permenant, with electrons that are free to move around, atoms can move about and slide past each other. This makes metals relatively ductile.
Toughness
Metals are tough for the same reason as they are ductile: the positive ions can slide past each other while still remaining together. So, instead of breaking apart, they change shape, resulting in increased toughness. This effect is called plasticity. When a tough material breaks the ratio of 'energy used / new surface area created' is very large.
Elasticity
When a metal is stretched, it can return to its original shape because the sea of electrons which bonds the ions together can be stretched as well.
Brittle
The opposite of tough: a material is likely to crack or shatter upon impact or force. It will snap cleanly due to defects and cracks. Metals can be brittle in certain circumstances, and a metal can be made more brittle by alloying or by work hardening.
Malleability
Metals are malleable because their atoms are arranged in flat planes that can slide past each other. Their bonds are non-directional. Metals also contain dislocations which mean that ions in the structure can be moved unilaterally rather than as a whole layer, which takes less energy to do.
Thermal Properties
editMetals conduct electricity well for 2 main reasons. Firstly, they are in a lattice. The atoms are arranged both closely and neatly. This means that atoms transmit forces very efficiently through the material, so thermal vibrations pass heat energy along easily. This effect is also observed in ionic lattices and in silicon and diamond which are covalent lattices.
Secondly, the free electrons move more when heated, which is another method of passing heat through the lattice.
Transformation
editDiffusive transformation: occur when the planes of atoms in the material move past each other due to the stresses on the object. This transformation is permanent and cannot be recovered from due to energy being absorbed by the structure
Diffusionless transformation: occurs where the bonds between the atoms stretch, allowing the material to deform elastically. An example would be rubber or a shape memory metal/alloy (often referred to as SMA) such as a nickel-titanium alloy. In the shape memory alloy the transformation occurs via the change of phase of the internal structure from martensitic to deformed martensitic, which allows the SMA to have a high percentage strain (up to 8% for some SMA's in comparison to approximately 0.5% for steel). If the material is then heated above a certain temperature the deformed martensite will form austenite, which returns to twinned martensite after cooling.
Arrangement of atoms
editMetal atoms form lattices. These are neat ordered rows of atoms that stack together to make layers, which in turn stack neatly to make a 3d structure. The fact metals stay in ordered structures is key to their properties. The neat ordered rows will stretch billions and billions of atoms across. However, they do not go on forever. Metals are usually formed from a molten state. When the liquid solidifies, this happens in many places at once. Therefore many crystals form at once, and the crystals are oriented randomly with respect to one another. Metals are polycrystalline.
How grains affect the mechanical properties is beyond the scope of the A-level course, however, as a rule of thumb, smaller grains mean a higher strength. Single crystal metals can be grown, and they have interesting unique properties related to their geometry. However, this is a difficult and specialised process, but single crystal metals can be used for turbine blades inside aeroplane engines.