P
(
X
1
≤
x
1
,
.
.
.
,
X
d
≤
x
d
)
{\displaystyle P\left(X_{1}\leq x_{1},...,X_{d}\leq x_{d}\right)\,}
=
P
(
X
1
≤
x
1
)
⋯
P
(
X
d
≤
x
d
)
{\displaystyle =P\left(X_{1}\leq x_{1}\right)\cdots P\left(X_{d}\leq x_{d}\right)\,}
F
X
1
,
X
2
,
.
.
.
X
d
(
x
1...
d
)
{\displaystyle F_{X_{1},X_{2},...X_{d}}(x_{1...d})\,}
=
F
X
1
(
x
1
)
⋯
F
X
d
(
x
d
)
{\displaystyle =F_{X_{1}}(x_{1})\cdots F_{X_{d}}(x_{d})\,}
f
X
1
,
X
2
,
.
.
.
X
d
(
x
1...
d
)
{\displaystyle f_{X_{1},X_{2},...X_{d}}(x_{1...d})\,}
=
f
X
1
(
x
1
)
⋯
f
X
d
(
x
d
)
{\displaystyle =f_{X_{1}}(x_{1})\cdots f_{X_{d}}(x_{d})\,}
E
[
X
1
⋅
X
2
⋯
X
d
]
{\displaystyle E\left[X_{1}\cdot X_{2}\cdots X_{d}\right]\,}
=
E
[
X
1
]
⋯
E
[
X
d
]
{\displaystyle =E\left[X_{1}\right]\cdots E\left[X_{d}\right]\,}
E
[
g
1
(
X
1
)
⋅
g
2
(
X
2
)
⋯
g
d
(
X
d
)
]
{\displaystyle E\left[g_{1}\left(X_{1}\right)\cdot g_{2}\left(X_{2}\right)\cdots g_{d}\left(X_{d}\right)\right]\,}
=
E
[
g
1
(
X
1
)
]
⋯
E
[
g
d
(
X
d
)
]
{\displaystyle =E\left[g_{1}\left(X_{1}\right)\right]\cdots E\left[g_{d}\left(X_{d}\right)\right]\,}
M
X
1
+
.
.
.
+
X
d
(
x
)
{\displaystyle M_{X_{1}+...+X_{d}}(x)\,}
=
M
X
1
(
x
)
⋯
M
X
1
(
x
)
{\displaystyle =M_{X_{1}}(x)\cdots M_{X_{1}}(x)\,}
F
X
Y
(
x
,
y
)
{\displaystyle F_{XY}(x,y)\,}
=
?
?
?
{\displaystyle =???\,}
f
X
Y
(
x
,
y
)
{\displaystyle f_{XY}(x,y)\,}
=
?
?
?
{\displaystyle =???\,}
F
X
|
Y
(
x
|
y
)
{\displaystyle F_{X|Y}(x|y)\,}
=
?
?
?
{\displaystyle =???\,}
F
X
+
Y
(
x
)
{\displaystyle F_{X+Y}(x)\,}
=
P
(
X
+
Y
≤
x
)
{\displaystyle =P\left(X+Y\leq x\right)\,}