Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
University of Alberta Guide/STAT/222/Formulas and Functions/General Formulas
Language
Watch
Edit
<
University of Alberta Guide
|
STAT/222
Calculus
exp
(
y
)
=
e
y
=
1
+
y
+
y
2
2
!
+
⋯
+
y
∞
∞
!
{\displaystyle {\mbox{exp}}(y)=e^{y}=1+y+{\frac {y^{2}}{2!}}+\cdots +{\frac {y^{\infty }}{\infty !}}\,}
∫
a
b
u
δ
v
=
u
v
|
a
b
−
∫
a
b
v
δ
u
{\displaystyle \int _{a}^{b}u\delta v=uv|_{a}^{b}-\int _{a}^{b}v\delta u}
Γ
(
α
)
=
∫
0
∞
y
α
−
1
e
−
y
δ
y
{\displaystyle \Gamma (\alpha )=\int _{0}^{\infty }y^{\alpha -1}e^{-y}\delta y}
Γ
(
1
/
2
)
=
π
,
Γ
(
1
)
=
1
,
Γ
(
α
+
1
)
=
α
Γ
(
α
)
{\displaystyle \Gamma (1/2)={\sqrt {\pi }},\Gamma (1)=1,\Gamma (\alpha +1)=\alpha \Gamma (\alpha )}
Moment Formulas
M
X
(
u
)
=
E
[
e
u
X
]
{\displaystyle M_{X}(u)=E\left[e^{uX}\right]}
Var
(
X
)
=
E
[
X
2
]
−
(
E
[
X
]
)
2
{\displaystyle {\mbox{Var}}(X)=E\left[X^{2}\right]-\left(E\left[X\right]\right)^{2}}
Central Limit Theorem
P
(
a
<
m
(
Θ
^
(
m
)
−
Θ
)
ρ
≤
b
)
m
→
∞
→
∫
a
b
e
−
x
2
2
2
π
δ
x
{\displaystyle P\left(a<{\frac {{\sqrt {m}}\left({\hat {\Theta }}\left(m\right)-\Theta \right)}{\rho }}\leq b\right){\begin{matrix}{}_{m\rightarrow \infty }\\{\overrightarrow {\qquad \qquad }}\\\end{matrix}}\int _{a}^{b}{\frac {e^{-{\frac {x^{2}}{2}}}}{\sqrt {2\pi }}}\delta x}
Convolution
f
X
+
Y
(
y
)
=
∫
−
∞
∞
f
X
(
y
−
z
)
f
Y
(
z
)
δ
z
=
∫
−
∞
∞
f
X
(
z
)
f
Y
(
y
−
z
)
δ
z
{\displaystyle f_{X+Y}(y)=\int _{-\infty }^{\infty }f_{X}(y-z)f_{Y}(z)\delta z=\int _{-\infty }^{\infty }f_{X}(z)f_{Y}(y-z)\delta z}
Reliability and Hazard
R
S
(
t
)
=
∏
i
=
1
N
R
i
(
t
)
{\displaystyle R_{S}(t)=\prod _{i=1}^{N}R_{i}(t)}
R
P
(
t
)
=
1
−
∏
i
=
1
N
(
1
−
R
i
(
t
)
)
{\displaystyle R_{P}(t)=1-\prod _{i=1}^{N}\left(1-R_{i}(t)\right)}
h
T
(
t
)
=
f
T
(
t
)
R
T
(
t
)
{\displaystyle h_{T}(t)={\frac {f_{T}(t)}{R_{T}(t)}}}
R
T
(
t
)
=
exp
(
−
∫
0
t
h
T
(
s
)
δ
s
)
{\displaystyle R_{T}(t)={\mbox{exp}}\left(-\int _{0}^{t}h_{T}(s)\delta s\right)}
Redundancy
R
(
t
)
=
∑
i
=
k
m
(
m
i
)
(
R
a
(
t
)
)
i
(
1
−
R
a
(
t
)
)
m
−
i
{\displaystyle R(t)=\sum _{i=k}^{m}{m \choose i}\left(R_{a}(t)\right)^{i}\left(1-R_{a}(t)\right)^{m-i}}