In this chapter, we will look at the basic properties of the root of unity.
We have make use of an important observation, namely
a
3
=
1
{\displaystyle a^{3}=1}
, in the examples above. Numbers that satisfy the equation:
a
n
=
1
,
n
is a natural number
{\displaystyle a^{n}=1,\quad n{\text{ is a natural number}}}
are called the n th roots of unity or the unit roots . From the knowledge of algebra, the following formula:
ϵ
k
=
cos
2
k
π
n
+
i
sin
2
k
π
n
,
k
is a natural number
{\displaystyle \epsilon _{k}=\cos {\frac {2k\pi }{n}}+i\sin {\frac {2k\pi }{n}},\quad k{\text{ is a natural number}}}
always gives a root of unity. When
k
=
0
,
1
,
…
,
n
−
1
{\displaystyle k=0,1,\ldots ,n-1}
,
ϵ
k
{\displaystyle \epsilon _{k}}
takes distinct values, and when
k
{\displaystyle k}
takes other values,
ϵ
k
{\displaystyle \epsilon _{k}}
equals one of the values
ϵ
0
,
ϵ
1
,
…
,
ϵ
n
−
1
{\displaystyle \epsilon _{0},\epsilon _{1},\ldots ,\epsilon _{n-1}}
. Moreover, as a polynomial equation of degree
n
{\displaystyle n}
, the equation has exactly
n
{\displaystyle n}
roots. Therefore, ALL roots of unity are:
ϵ
0
,
ϵ
1
,
…
,
ϵ
n
−
1
{\displaystyle \epsilon _{0},\epsilon _{1},\ldots ,\epsilon _{n-1}}
.
Note that
ϵ
0
=
1
{\displaystyle \epsilon _{0}=1}
.
On the other hand, the roots of unity are the solution of the equation:
x
n
−
1
=
0
{\displaystyle x^{n}-1=0}
.
Moreover:
x
n
−
1
=
(
x
−
1
)
(
x
n
−
1
+
x
n
−
2
+
⋯
+
x
+
1
)
{\displaystyle x^{n}-1=(x-1)(x^{n-1}+x^{n-2}+\cdots +x+1)}
.
Therefore,
ϵ
1
,
ϵ
2
,
…
,
ϵ
n
−
1
{\displaystyle \epsilon _{1},\epsilon _{2},\ldots ,\epsilon _{n-1}}
are all roots of the equation:
x
n
−
1
+
x
n
−
2
+
⋯
+
x
+
1
=
0
{\displaystyle x^{n-1}+x^{n-2}+\cdots +x+1=0}
.
The cube roots of unity
edit
The cube roots of unity is a good starting point in our study of the properties of unit roots.
Example 3
The cube roots of unity are:
ϵ
0
=
1
{\displaystyle \epsilon _{0}=1}
,
ϵ
1
=
cos
2
π
3
+
i
sin
2
π
3
=
−
1
2
+
3
2
i
{\displaystyle \epsilon _{1}=\cos {\frac {2\pi }{3}}+i\sin {\frac {2\pi }{3}}=-{\frac {1}{2}}+{\frac {\sqrt {3}}{2}}i}
,
ϵ
2
=
cos
4
π
3
+
i
sin
4
π
3
=
−
1
2
−
3
2
i
{\displaystyle \epsilon _{2}=\cos {\frac {4\pi }{3}}+i\sin {\frac {4\pi }{3}}=-{\frac {1}{2}}-{\frac {\sqrt {3}}{2}}i}
.
We usually write
ω
=
ϵ
1
{\displaystyle \omega =\epsilon _{1}}
. Then:
ω
2
=
(
−
1
2
+
3
2
i
)
2
=
1
4
−
3
2
i
−
3
4
=
−
1
2
−
3
2
i
=
ϵ
2
{\displaystyle \omega ^{2}=(-{\frac {1}{2}}+{\frac {\sqrt {3}}{2}}i)^{2}={\frac {1}{4}}-{\frac {\sqrt {3}}{2}}i-{\frac {3}{4}}=-{\frac {1}{2}}-{\frac {\sqrt {3}}{2}}i=\epsilon _{2}}
.
Therefore, the cube roots of unity can also be written as
1
,
ω
,
ω
2
{\displaystyle 1,\omega ,\omega ^{2}}
.
The cube root of unity has the following properties:
They have a unit modulus:
|
1
|
=
|
ω
|
=
|
ω
2
|
=
1
{\displaystyle |1|=|\omega |=|\omega ^{2}|=1}
.
1
,
ω
,
ω
2
{\displaystyle 1,\omega ,\omega ^{2}}
are the roots of the equation
x
3
−
1
=
0
{\displaystyle x^{3}-1=0}
.
ω
,
ω
2
{\displaystyle \omega ,\omega ^{2}}
are the roots of the equation
x
2
+
x
+
1
=
0
{\displaystyle x^{2}+x+1=0}
.
ϵ
2
2
=
(
−
1
2
−
3
2
i
)
2
=
1
4
+
3
2
i
−
3
4
=
−
1
2
+
3
2
i
=
ϵ
1
{\displaystyle \epsilon _{2}^{2}=(-{\frac {1}{2}}-{\frac {\sqrt {3}}{2}}i)^{2}={\frac {1}{4}}+{\frac {\sqrt {3}}{2}}i-{\frac {3}{4}}=-{\frac {1}{2}}+{\frac {\sqrt {3}}{2}}i=\epsilon _{1}}
. So, the cube roots of unity still have the form of
1
,
ω
,
ω
2
{\displaystyle 1,\omega ,\omega ^{2}}
if we let
ω
=
ϵ
2
{\displaystyle \omega =\epsilon _{2}}
.
On the complex plane, the roots of unity are at the vertices of the regular triangle inscribed in the unit circle, with one vertex at 1.
ω
¯
=
ω
2
{\displaystyle {\overline {\omega }}=\omega ^{2}}
,
ω
2
¯
=
ω
{\displaystyle {\overline {\omega ^{2}}}=\omega }
.
1
n
+
ω
n
+
(
ω
2
)
n
=
{
0
if
n
is not a multiple of 3
3
if
n
is a multiple of 3
{\displaystyle 1^{n}+\omega ^{n}+(\omega ^{2})^{n}={\begin{cases}0&{\text{if }}n{\text{ is not a multiple of 3}}\\3&{\text{if }}n{\text{ is a multiple of 3}}\end{cases}}}
General properties of roots of unity
edit
After looking at the properties of the cube roots of unity, we are ready to study the general properties of the n th roots of unity.
Property 1
The n th roots of unity have a unit modulus, that is:
|
ϵ
k
|
=
1
k
is an integer
{\displaystyle |\epsilon _{k}|=1\quad k{\text{ is an integer}}}
.
Proof It follows from the polar form of the unit roots.
Property 2
The product of two unit roots is also a unit root. Specifically, if
j
{\displaystyle j}
and
k
{\displaystyle k}
are integers, then:
ϵ
j
⋅
ϵ
k
=
ϵ
j
+
k
{\displaystyle \epsilon _{j}\cdot \epsilon _{k}=\epsilon _{j+k}}
.
Proof From the multiplication rule of complex number:
ϵ
j
⋅
ϵ
k
=
(
cos
2
j
π
n
+
i
sin
2
j
π
n
)
⋅
(
cos
2
k
π
n
+
i
sin
2
k
π
n
)
=
(
cos
2
(
j
+
k
)
π
n
+
i
sin
2
(
j
+
k
)
π
n
)
=
ϵ
j
+
k
{\displaystyle \epsilon _{j}\cdot \epsilon _{k}=(\cos {\frac {2j\pi }{n}}+i\sin {\frac {2j\pi }{n}})\cdot (\cos {\frac {2k\pi }{n}}+i\sin {\frac {2k\pi }{n}})=(\cos {\frac {2(j+k)\pi }{n}}+i\sin {\frac {2(j+k)\pi }{n}})=\epsilon _{j+k}}
.
This is a very important property of the roots of unity, from which a series of corollary can be derived:
Corollary 1
(
ϵ
j
)
−
1
=
ϵ
−
j
{\displaystyle (\epsilon _{j})^{-1}=\epsilon _{-j}}
.
Proof
ϵ
j
⋅
ϵ
−
j
=
ϵ
j
+
(
−
j
)
=
ϵ
0
=
1
{\displaystyle \epsilon _{j}\cdot \epsilon _{-j}=\epsilon _{j+(-j)}=\epsilon _{0}=1}
.
Now, since
ϵ
j
≠
0
{\displaystyle \epsilon _{j}\neq 0}
, multiplying its inverse on both sides yields
(
ϵ
j
)
−
1
=
ϵ
−
j
{\displaystyle (\epsilon _{j})^{-1}=\epsilon _{-j}}
.
Corollary 2 For any integer
m
{\displaystyle m}
:
(
ϵ
k
)
m
=
ϵ
m
k
{\displaystyle (\epsilon _{k})^{m}=\epsilon _{mk}}
.
Proof When
m
{\displaystyle m}
is positive,
(
ϵ
k
)
m
=
ϵ
k
⋅
ϵ
k
⋅
⋯
⋅
ϵ
k
⏟
m
times
=
ϵ
k
+
k
+
⋯
+
k
⏟
m
times
=
ϵ
m
k
{\displaystyle (\epsilon _{k})^{m}=\underbrace {\epsilon _{k}\cdot \epsilon _{k}\cdot \cdots \cdot \epsilon _{k}} _{m{\text{ times}}}=\epsilon _{\underbrace {{}_{k+k+\cdots +k}} _{m{\text{ times}}}}=\epsilon _{mk}}
.
When
m
=
0
{\displaystyle m=0}
, non-zero complex number raised to the power of 0 is 1, so
(
ϵ
k
)
0
=
1
=
ϵ
0
{\displaystyle (\epsilon _{k})^{0}=1=\epsilon _{0}}
.
When
m
{\displaystyle m}
is negative,
−
m
{\displaystyle -m}
is positive, so
(
ϵ
j
)
m
=
(
(
ϵ
j
)
−
m
)
−
1
=
(
ϵ
−
m
j
)
−
1
=
ϵ
m
j
{\displaystyle (\epsilon _{j})^{m}=((\epsilon _{j})^{-m})^{-1}=(\epsilon _{-mj})^{-1}=\epsilon _{mj}}
.
Corollary 3 If
r
{\displaystyle r}
is the remainder when
k
{\displaystyle k}
is divided by
n
{\displaystyle n}
, then
ϵ
k
=
ϵ
r
{\displaystyle \epsilon _{k}=\epsilon _{r}}
.
Proof Let
k
=
n
q
+
r
{\displaystyle k=nq+r}
where
q
{\displaystyle q}
is an integer and
0
≤
r
<
n
{\displaystyle 0\leq r<n}
, then:
ϵ
k
=
ϵ
n
q
+
r
=
(
ϵ
n
)
q
⋅
ϵ
r
=
1
n
ϵ
r
=
ϵ
r
{\displaystyle \epsilon _{k}=\epsilon _{nq+r}=(\epsilon _{n})^{q}\cdot \epsilon _{r}=1^{n}\epsilon _{r}=\epsilon _{r}}
.
Corollary 4
ϵ
k
=
(
ϵ
1
)
k
{\displaystyle \epsilon _{k}=(\epsilon _{1})^{k}}
.
Any root of unity can be expressed as a power of
ϵ
1
{\displaystyle \epsilon _{1}}
.
We may ask the following question: is there any other root of unity
ϵ
ℓ
{\displaystyle \epsilon _{\ell }}
such that any root of unity can be expressed as a power of
ϵ
ℓ
{\displaystyle \epsilon _{\ell }}
?
In fact we have seen such an example when we studied the cube root of unity. A unit root with such property is called a primitive root.
Corollary 5 The conjugate of a unit root is also a unit root.
Proof From the property of complex numbers
z
⋅
z
¯
=
|
z
|
2
{\displaystyle z\cdot {\overline {z}}=|z|^{2}}
and
|
ϵ
k
|
=
1
{\displaystyle |\epsilon _{k}|=1}
,
ϵ
k
¯
=
|
ϵ
k
|
2
ϵ
k
=
1
ϵ
k
=
ϵ
−
k
=
ϵ
n
−
k
{\displaystyle {\overline {\epsilon _{k}}}={\frac {|\epsilon _{k}|^{2}}{\epsilon _{k}}}={\frac {1}{\epsilon _{k}}}=\epsilon _{-k}=\epsilon _{n-k}}
Corollary 6
(
ϵ
k
)
j
=
(
ϵ
j
)
k
{\displaystyle (\epsilon _{k})^{j}=(\epsilon _{j})^{k}}
.
Proof
(
ϵ
k
)
j
=
ϵ
j
k
=
(
ϵ
j
)
k
{\displaystyle (\epsilon _{k})^{j}=\epsilon _{jk}=(\epsilon _{j})^{k}}
.
Property 3 Let
m
{\displaystyle m}
be an integer, then:
1
+
ϵ
1
m
+
ϵ
2
m
+
⋯
+
ϵ
n
−
1
m
=
{
0
if
m
is not a multiple of
n
n
if
m
is a multiple of
n
{\displaystyle 1+\epsilon _{1}^{m}+\epsilon _{2}^{m}+\cdots +\epsilon _{n-1}^{m}={\begin{cases}0&{\text{if }}m{\text{ is not a multiple of }}n\\n&{\text{if }}m{\text{ is a multiple of }}n\end{cases}}}
Proof When
m
{\displaystyle m}
is a multiple of
n
{\displaystyle n}
,
(
ϵ
k
)
m
=
1
{\displaystyle (\epsilon _{k})^{m}=1}
for any integer
k
{\displaystyle k}
, so:
1
+
ϵ
1
m
+
ϵ
2
m
+
⋯
+
ϵ
n
−
1
m
=
1
+
1
+
⋯
+
1
⏞
n
times
=
n
{\displaystyle 1+\epsilon _{1}^{m}+\epsilon _{2}^{m}+\cdots +\epsilon _{n-1}^{m}=\overbrace {1+1+\cdots +1} ^{n{\text{ times}}}=n}
When
m
{\displaystyle m}
is not a multiple of
n
{\displaystyle n}
,
(
ϵ
1
)
m
≠
1
{\displaystyle (\epsilon _{1})^{m}\neq 1}
. Then:
1
+
ϵ
1
m
+
ϵ
2
m
+
⋯
+
ϵ
n
−
1
m
=
1
+
ϵ
m
+
(
ϵ
m
)
2
+
⋯
+
(
ϵ
m
)
n
−
1
=
1
−
(
ϵ
m
)
n
1
−
ϵ
m
=
1
−
(
ϵ
n
)
m
1
−
ϵ
m
=
1
−
1
1
−
ϵ
m
=
0
{\displaystyle 1+\epsilon _{1}^{m}+\epsilon _{2}^{m}+\cdots +\epsilon _{n-1}^{m}=1+\epsilon _{m}+(\epsilon _{m})^{2}+\cdots +(\epsilon _{m})^{n-1}={\frac {1-(\epsilon _{m})^{n}}{1-\epsilon _{m}}}={\frac {1-(\epsilon _{n})^{m}}{1-\epsilon _{m}}}={\frac {1-1}{1-\epsilon _{m}}}=0}
.
Corollary 7 If
n
>
1
{\displaystyle n>1}
, the sum of all unit roots is zero:
1
+
ϵ
1
+
ϵ
2
+
⋯
+
ϵ
n
−
1
=
0
{\displaystyle 1+\epsilon _{1}+\epsilon _{2}+\cdots +\epsilon _{n-1}=0}
.
Proof Take
m
=
1
{\displaystyle m=1}
. Alternatively, the sum of roots of the equation
x
n
−
1
=
0
{\displaystyle x^{n}-1=0}
is zero.
Corollary 8 If
n
>
1
{\displaystyle n>1}
and
ϵ
k
≠
1
{\displaystyle \epsilon _{k}\neq 1}
, then
1
+
ϵ
k
+
(
ϵ
k
)
2
+
⋅
+
(
ϵ
k
)
n
−
1
=
0
{\displaystyle 1+\epsilon _{k}+(\epsilon _{k})^{2}+\cdot +(\epsilon _{k})^{n-1}=0}
.
Proof Since
ϵ
k
≠
1
=
ϵ
0
{\displaystyle \epsilon _{k}\neq 1=\epsilon _{0}}
,
k
{\displaystyle k}
is not a multiple of
n
{\displaystyle n}
. Then:
1
+
ϵ
k
+
(
ϵ
k
)
2
+
⋯
+
(
ϵ
k
)
n
−
1
=
1
+
(
ϵ
1
)
k
+
(
ϵ
2
)
k
+
⋯
+
(
ϵ
n
−
1
)
k
=
0
{\displaystyle 1+\epsilon _{k}+(\epsilon _{k})^{2}+\cdots +(\epsilon _{k})^{n-1}=1+(\epsilon _{1})^{k}+(\epsilon _{2})^{k}+\cdots +(\epsilon _{n-1})^{k}=0}
.
Therefore, if we exclude
ϵ
0
=
1
{\displaystyle \epsilon _{0}=1}
, the n th roots of unity
ϵ
1
,
ϵ
2
,
…
,
ϵ
n
−
1
{\displaystyle \epsilon _{1},\epsilon _{2},\ldots ,\epsilon _{n-1}}
are the roots of the equation:
1
+
x
+
x
2
+
⋯
+
x
n
−
1
=
0
{\displaystyle 1+x+x^{2}+\cdots +x^{n-1}=0}
.
Example 4 Find the fifth roots of unity.
Solution It can be proved that:
cos
2
π
5
=
5
−
1
4
{\displaystyle \cos {\frac {2\pi }{5}}={\frac {{\sqrt {5}}-1}{4}}}
,
sin
2
π
5
=
10
+
2
5
4
{\displaystyle \sin {\frac {2\pi }{5}}={\frac {\sqrt {10+2{\sqrt {5}}}}{4}}}
.
Therefore,
ϵ
0
=
1
{\displaystyle \epsilon _{0}=1}
,
ϵ
1
=
5
−
1
4
+
10
+
2
5
4
i
{\displaystyle \epsilon _{1}={\frac {{\sqrt {5}}-1}{4}}+{\frac {\sqrt {10+2{\sqrt {5}}}}{4}}i}
,
by corollary 4 of property 2,
ϵ
2
=
(
5
−
1
4
+
10
+
2
5
4
i
)
2
=
−
5
+
1
4
+
10
−
2
5
4
i
{\displaystyle \epsilon _{2}=({\frac {{\sqrt {5}}-1}{4}}+{\frac {\sqrt {10+2{\sqrt {5}}}}{4}}i)^{2}=-{\frac {{\sqrt {5}}+1}{4}}+{\frac {\sqrt {10-2{\sqrt {5}}}}{4}}i}
,
by corollary 5 of property 2,
ϵ
3
=
ϵ
2
¯
=
−
5
+
1
4
−
10
−
2
5
4
i
{\displaystyle \epsilon _{3}={\overline {\epsilon _{2}}}=-{\frac {{\sqrt {5}}+1}{4}}-{\frac {\sqrt {10-2{\sqrt {5}}}}{4}}i}
,
ϵ
4
=
ϵ
1
¯
=
5
−
1
4
−
10
+
2
5
4
i
{\displaystyle \epsilon _{4}={\overline {\epsilon _{1}}}={\frac {{\sqrt {5}}-1}{4}}-{\frac {\sqrt {10+2{\sqrt {5}}}}{4}}i}
.
Example 5 Find the sixth roots of unity in terms of
ω
{\displaystyle \omega }
.
Solution
ϵ
0
=
1
{\displaystyle \epsilon _{0}=1}
,
ϵ
1
=
cos
2
π
6
+
i
sin
2
π
6
=
1
2
+
3
2
i
=
1
+
ω
{\displaystyle \epsilon _{1}=\cos {\frac {2\pi }{6}}+i\sin {\frac {2\pi }{6}}={\frac {1}{2}}+{\frac {\sqrt {3}}{2}}i=1+\omega }
,
ϵ
2
=
cos
4
π
6
+
i
sin
4
π
6
=
−
1
2
+
3
2
i
=
ω
{\displaystyle \epsilon _{2}=\cos {\frac {4\pi }{6}}+i\sin {\frac {4\pi }{6}}=-{\frac {1}{2}}+{\frac {\sqrt {3}}{2}}i=\omega }
,
ϵ
3
=
cos
6
π
6
+
i
sin
6
π
6
=
−
1
{\displaystyle \epsilon _{3}=\cos {\frac {6\pi }{6}}+i\sin {\frac {6\pi }{6}}=-1}
,
ϵ
4
=
cos
8
π
6
+
i
sin
8
π
6
=
−
1
2
−
3
2
i
=
ω
2
{\displaystyle \epsilon _{4}=\cos {\frac {8\pi }{6}}+i\sin {\frac {8\pi }{6}}=-{\frac {1}{2}}-{\frac {\sqrt {3}}{2}}i=\omega ^{2}}
,
ϵ
5
=
cos
10
π
6
+
i
sin
10
π
6
=
1
2
−
3
2
i
=
1
+
ω
2
{\displaystyle \epsilon _{5}=\cos {\frac {10\pi }{6}}+i\sin {\frac {10\pi }{6}}={\frac {1}{2}}-{\frac {\sqrt {3}}{2}}i=1+\omega ^{2}}
.
Example 6 Evaluate:
(
0
n
)
+
(
3
n
)
+
(
6
n
)
+
(
9
n
)
+
⋯
+
(
3
ℓ
−
3
n
)
+
(
3
ℓ
n
)
{\displaystyle {\tbinom {0}{n}}+{\tbinom {3}{n}}+{\tbinom {6}{n}}+{\tbinom {9}{n}}+\cdots +{\tbinom {3\ell -3}{n}}+{\tbinom {3\ell }{n}}}
,
where
3
ℓ
{\displaystyle 3\ell }
is the greatest multiple of 3 not exceeding
n
{\displaystyle n}
.
Analysis The expression is the sum of every first of three consecutive binomial coefficients:
(
0
n
)
,
(
1
n
)
,
(
2
n
)
,
(
3
n
)
,
…
,
(
n
−
1
n
)
,
(
n
n
)
{\displaystyle {\tbinom {0}{n}},{\tbinom {1}{n}},{\tbinom {2}{n}},{\tbinom {3}{n}},\ldots ,{\tbinom {n-1}{n}},{\tbinom {n}{n}}}
.
A similar but more familiar sum is:
(
0
n
)
+
(
2
n
)
+
(
4
n
)
+
⋯
{\displaystyle {\tbinom {0}{n}}+{\tbinom {2}{n}}+{\tbinom {4}{n}}+\cdots }
,
which can be computed by summing the binomial expansions:
(
1
+
x
)
n
=
(
0
n
)
+
(
1
n
)
x
+
(
2
n
)
x
2
+
⋯
+
(
n
n
)
x
n
{\displaystyle (1+x)^{n}={\tbinom {0}{n}}+{\tbinom {1}{n}}x+{\tbinom {2}{n}}x^{2}+\cdots +{\tbinom {n}{n}}x^{n}}
for
x
=
+
1
,
−
1
{\displaystyle x=+1,-1}
(note that these are the square root of unity). The sum is
(
1
+
1
)
n
+
(
1
−
1
)
n
=
2
(
0
n
)
+
(
1
+
(
−
1
)
)
(
1
n
)
+
(
1
2
+
(
−
1
)
2
)
)
(
2
n
)
+
⋯
+
(
1
n
+
(
−
1
)
n
)
(
n
n
)
{\displaystyle (1+1)^{n}+(1-1)^{n}=2{\tbinom {0}{n}}+(1+(-1)){\tbinom {1}{n}}+(1^{2}+(-1)^{2})){\tbinom {2}{n}}+\cdots +(1^{n}+(-1)^{n}){\tbinom {n}{n}}}
.
The value
1
k
+
(
−
1
)
k
{\displaystyle 1^{k}+(-1)^{k}}
(the coefficient of
(
k
n
)
{\displaystyle {\tbinom {k}{n}}}
) equals zero when
k
{\displaystyle k}
is odd, but equals two when
k
{\displaystyle k}
is even. (Note also that this follows from Property 3 for the square roots of unity.) Therefore,
2
(
0
n
)
+
2
(
2
n
)
+
2
(
4
n
)
+
⋯
=
2
n
{\displaystyle 2{\tbinom {0}{n}}+2{\tbinom {2}{n}}+2{\tbinom {4}{n}}+\cdots =2^{n}}
(
0
n
)
+
(
2
n
)
+
(
4
n
)
+
⋯
=
2
n
−
1
{\displaystyle {\tbinom {0}{n}}+{\tbinom {2}{n}}+{\tbinom {4}{n}}+\cdots =2^{n-1}}
For the sum in this example, property 3 for the cube roots of unity may be useful.
Solution Summing the binomial expansions:
(
1
+
x
)
n
=
(
0
n
)
+
(
1
n
)
x
+
(
2
n
)
x
2
+
⋯
+
(
n
n
)
x
n
{\displaystyle (1+x)^{n}={\tbinom {0}{n}}+{\tbinom {1}{n}}x+{\tbinom {2}{n}}x^{2}+\cdots +{\tbinom {n}{n}}x^{n}}
for
x
=
1
,
ω
,
ω
2
{\displaystyle x=1,\omega ,\omega ^{2}}
yields
(
1
+
1
)
n
+
(
1
+
ω
)
n
+
(
1
+
ω
2
)
n
=
3
(
0
n
)
+
(
1
+
ω
+
ω
2
)
(
1
n
)
+
(
1
2
+
ω
2
+
(
ω
2
)
2
)
(
2
n
)
+
⋯
+
(
1
n
+
ω
n
+
(
ω
2
)
n
)
(
n
n
)
{\displaystyle (1+1)^{n}+(1+\omega )^{n}+(1+\omega ^{2})^{n}=3{\tbinom {0}{n}}+(1+\omega +\omega ^{2}){\tbinom {1}{n}}+(1^{2}+\omega ^{2}+(\omega ^{2})^{2}){\tbinom {2}{n}}+\cdots +(1^{n}+\omega ^{n}+(\omega ^{2})^{n}){\tbinom {n}{n}}}
.
By property 3, the coefficient of every first of three terms equals 3 and all other terms vanish. Therefore,
3
(
0
n
)
+
3
(
3
n
)
+
3
(
6
n
)
+
⋯
=
2
n
+
(
−
ω
2
)
n
+
(
−
ω
)
n
{\displaystyle 3{\tbinom {0}{n}}+3{\tbinom {3}{n}}+3{\tbinom {6}{n}}+\cdots =2^{n}+(-\omega ^{2})^{n}+(-\omega )^{n}}
=
2
n
+
(
cos
π
3
+
i
sin
π
3
)
n
+
(
cos
−
π
3
+
i
sin
−
π
3
)
n
{\displaystyle =2^{n}+(\cos {\frac {\pi }{3}}+i\sin {\frac {\pi }{3}})^{n}+(\cos {\frac {-\pi }{3}}+i\sin {\frac {-\pi }{3}})^{n}}
=
2
n
+
2
cos
n
π
3
{\displaystyle =2^{n}+2\cos {\frac {n\pi }{3}}}
(
0
n
)
+
(
3
n
)
+
(
6
n
)
+
(
9
n
)
+
⋯
+
(
3
ℓ
−
3
n
)
+
(
3
ℓ
n
)
=
1
3
(
2
n
+
2
cos
n
π
3
)
{\displaystyle {\tbinom {0}{n}}+{\tbinom {3}{n}}+{\tbinom {6}{n}}+{\tbinom {9}{n}}+\cdots +{\tbinom {3\ell -3}{n}}+{\tbinom {3\ell }{n}}={\frac {1}{3}}(2^{n}+2\cos {\frac {n\pi }{3}})}
.