First let us find the distribution of
τ
r
{\displaystyle \tau _{r}}
:
P
(
τ
r
<
x
)
=
P
(
N
1
(
x
)
≥
r
)
=
∑
k
=
r
∞
(
λ
x
)
k
k
!
e
−
λ
x
{\displaystyle P(\tau _{r}<x)=P(N_{1}(x)\geq r)=\sum _{k=r}^{\infty }{\frac {(\lambda x)^{k}}{k!}}e^{-\lambda x}}
Thus by the chain rule, our random variable
τ
r
{\displaystyle \tau _{r}}
has probability density function
p
τ
r
(
x
)
=
∑
k
=
r
∞
k
λ
(
λ
x
)
k
−
1
k
!
e
−
λ
x
+
(
λ
x
)
k
k
!
(
−
λ
)
e
−
λ
x
=
λ
(
λ
x
)
r
−
1
(
r
−
1
)
!
e
−
λ
x
{\displaystyle p_{\tau _{r}}(x)=\sum _{k=r}^{\infty }{\frac {k\lambda (\lambda x)^{k-1}}{k!}}e^{-\lambda x}+{\frac {(\lambda x)^{k}}{k!}}(-\lambda )e^{-\lambda x}=\lambda {\frac {(\lambda x)^{r-1}}{(r-1)!}}e^{-\lambda x}}
So then
E
[
N
2
(
τ
r
2
)
]
=
E
[
E
[
N
2
(
t
)
|
τ
r
2
=
t
]
]
=
∫
0
∞
x
2
λ
2
λ
λ
r
−
1
(
r
−
1
)
!
x
r
−
1
e
−
λ
x
d
x
=
λ
r
+
2
(
r
−
1
)
!
∫
0
∞
x
r
+
1
e
−
λ
x
d
x
{\displaystyle {\begin{aligned}E[N_{2}(\tau _{r}^{2})]=E[E[N_{2}(t)|\tau _{r}^{2}=t]]&=\int _{0}^{\infty }x^{2}\lambda ^{2}\lambda {\frac {\lambda ^{r-1}}{(r-1)!}}x^{r-1}e^{-\lambda x}\,dx\\&={\frac {\lambda ^{r+2}}{(r-1)!}}\int _{0}^{\infty }x^{r+1}e^{-\lambda x}\,dx\end{aligned}}}
Now integrate the remaining integral by parts letting
u
=
x
r
+
1
,
d
v
=
e
−
λ
x
d
x
{\displaystyle u=x^{r+1},dv=e^{-\lambda x}\,dx}
. We get:
E
[
N
2
(
τ
r
2
)
]
=
λ
r
+
2
(
r
−
1
)
!
[
−
1
λ
e
−
λ
x
x
r
+
1
|
0
∞
+
∫
0
∞
1
λ
r
+
1
x
r
e
−
λ
x
d
x
]
=
λ
r
+
2
(
r
−
1
)
!
[
∫
0
∞
1
λ
r
+
1
x
r
e
−
λ
x
d
x
]
=
λ
r
+
1
(
r
+
1
)
(
r
−
1
)
!
[
∫
0
∞
1
λ
r
+
1
x
r
e
−
λ
x
d
x
]
{\displaystyle {\begin{aligned}E[N_{2}(\tau _{r}^{2})]&={\frac {\lambda ^{r+2}}{(r-1)!}}[-{\frac {1}{\lambda }}e^{-\lambda x}x^{r+1}|_{0}^{\infty }+\int _{0}^{\infty }{\frac {1}{\lambda }}^{r+1}x^{r}e^{-\lambda x}\,dx]\\&={\frac {\lambda ^{r+2}}{(r-1)!}}[\int _{0}^{\infty }{\frac {1}{\lambda }}^{r+1}x^{r}e^{-\lambda x}\,dx]\\&={\frac {\lambda ^{r+1}(r+1)}{(r-1)!}}[\int _{0}^{\infty }{\frac {1}{\lambda }}^{r+1}x^{r}e^{-\lambda x}\,dx]\\\end{aligned}}}
Repeat integration by parts another
r
{\displaystyle r}
times and we get
E
[
N
2
(
τ
r
2
)
]
=
(
r
+
1
)
r
λ
∫
0
∞
e
−
λ
x
d
x
=
λ
(
r
+
1
)
r
−
1
λ
e
−
λ
x
|
0
∞
=
(
r
+
1
)
r
{\displaystyle E[N_{2}(\tau _{r}^{2})]=(r+1)r\lambda \int _{0}^{\infty }e^{-\lambda x}\,dx=\lambda (r+1)r{\frac {-1}{\lambda }}e^{-\lambda x}|_{0}^{\infty }=(r+1)r}
Let
X
k
n
,
1
≤
k
≤
n
{\displaystyle X_{kn},1\leq k\leq n}
be independent random variables such that
P
(
X
k
n
=
0
)
=
1
−
1
/
n
,
P
(
X
k
n
=
k
2
)
=
1
/
n
{\displaystyle P(X_{kn}=0)=1-1/n,P(X_{kn}=k^{2})=1/n}
(a) Find the characteristic function of
S
−
n
=
∑
k
=
1
n
X
k
n
{\displaystyle S-n=\sum _{k=1}^{n}X_{kn}}
.
(b) Show that
S
n
/
n
2
{\displaystyle S_{n}/n^{2}}
converges in distribution to a non-degenerate random variable.
φ
X
k
n
(
t
)
=
(
1
−
1
/
n
)
+
1
/
n
e
i
t
k
2
{\displaystyle \varphi _{X_{kn}}(t)=(1-1/n)+1/ne^{itk^{2}}}
Then by independence, we have
φ
X
n
(
t
)
=
∏
k
=
1
n
φ
X
k
n
=
∏
k
=
1
n
(
1
−
1
/
n
)
+
1
/
n
e
i
t
k
2
{\displaystyle \varphi _{X_{n}}(t)=\prod _{k=1}^{n}\varphi _{X_{kn}}=\prod _{k=1}^{n}(1-1/n)+1/ne^{itk^{2}}}