Suppose that
f
∈
L
1
(
R
)
{\displaystyle f\in L^{1}(R)\!\,}
is a uniformly continous function. Show that
lim
|
x
|
→
∞
f
(
x
)
=
0
{\displaystyle \lim _{|x|\rightarrow \infty }f(x)=0\!\,}
L^1 implies integral of tail end of function goes to zero
edit
lim
M
→
∞
∫
[
−
M
,
M
]
|
f
|
=
∫
R
|
f
|
lim
M
→
∞
∫
[
−
M
,
M
]
|
f
|
−
∫
R
|
f
|
⏟
<
∞
since
f
∈
L
1
=
0
∫
R
|
f
|
−
lim
M
→
∞
∫
[
−
M
,
M
]
|
f
|
=
0
lim
M
→
∞
∫
[
−
M
,
M
]
c
|
f
|
=
0
{\displaystyle {\begin{aligned}\lim _{M\rightarrow \infty }\int _{[-M,M]}|f|&=\int _{\mathbb {R} }|f|\\\lim _{M\rightarrow \infty }\int _{[-M,M]}|f|-\underbrace {\int _{\mathbb {R} }|f|} _{<\infty {\mbox{ since }}f\in L^{1}}&=0\\\int _{\mathbb {R} }|f|-\lim _{M\rightarrow \infty }\int _{[-M,M]}|f|&=0\\\lim _{M\rightarrow \infty }\int _{[-M,M]^{c}}|f|&=0\end{aligned}}\!\,}
Suppose
lim
|
x
|
→
∞
f
(
x
)
≠
0
{\displaystyle \lim _{|x|\rightarrow \infty }f(x)\neq 0\!\,}
. Then,
lim
x
→
∞
f
(
x
)
≠
0
{\displaystyle \lim _{x\rightarrow \infty }f(x)\neq 0\!\,}
or
lim
x
→
−
∞
f
(
x
)
≠
0
{\displaystyle \lim _{x\rightarrow -\infty }f(x)\neq 0\!\,}
Without loss of generality, we can assume the first one, i.e.,
lim
x
→
∞
f
(
x
)
≠
0
{\displaystyle \lim _{x\rightarrow \infty }f(x)\neq 0\!\,}
(see remark below to see why this)
Note that
lim
x
→
∞
f
(
x
)
=
0
{\displaystyle \lim _{x\rightarrow \infty }f(x)=0\!\,}
can be written as
∀
ϵ
>
0
[
∃
M
>
0
[
∀
x
>
M
[
|
f
(
x
)
|
<
ϵ
]
]
]
{\displaystyle \forall \epsilon >0\left[\exists M>0\left[\forall x>M\left[|f(x)|<\epsilon \right]\right]\right]\!\,}
Then, the negation of the above statement gives
∃
ϵ
0
>
0
[
∀
M
>
0
[
∃
x
0
>
M
[
|
f
(
x
0
)
|
>
ϵ
0
]
]
]
{\displaystyle \exists \epsilon _{0}>0[\forall M>0[\exists x_{0}>M[|f(x_{0})|>\epsilon _{0}]]]\!\,}
Because of the uniform continuity, for the
ϵ
0
{\displaystyle \epsilon _{0}\!\,}
there is a
δ
(
ϵ
0
)
>
0
{\displaystyle \delta (\epsilon _{0})>0\!\,}
such that
|
f
(
x
0
)
−
f
(
x
)
|
<
ϵ
0
2
{\displaystyle |f(x_{0})-f(x)|<{\frac {\epsilon _{0}}{2}}\!\,}
,
whenever
|
x
−
x
0
|
<
δ
(
ϵ
0
)
{\displaystyle |x-x_{0}|<\delta (\epsilon _{0})\!\,}
Then, if
|
x
−
x
0
|
<
δ
(
ϵ
0
)
{\displaystyle |x-x_{0}|<\delta (\epsilon _{0})\!\,}
, by Triangle Inequality, we have
ϵ
0
<
|
f
(
x
0
)
|
<
|
f
(
x
)
|
+
|
f
(
x
0
)
−
f
(
x
)
|
<
|
f
(
x
)
|
+
ϵ
0
2
{\displaystyle \epsilon _{0}<|f(x_{0})|<|f(x)|+|f(x_{0})-f(x)|<|f(x)|+{\frac {\epsilon _{0}}{2}}\!\,}
which implies
ϵ
0
2
<
|
f
(
x
)
|
{\displaystyle {\frac {\epsilon _{0}}{2}}<|f(x)|\!\,}
,
whenever
|
x
−
x
0
|
<
δ
(
ϵ
0
)
{\displaystyle |x-x_{0}|<\delta (\epsilon _{0})\!\,}
Construct Contradiction
edit
Let
x
0
{\displaystyle x_{0}\!\,}
be a number greater than
M
{\displaystyle M\!\,}
. Note that
ϵ
0
{\displaystyle \epsilon _{0}\!\,}
and
δ
(
ϵ
0
)
{\displaystyle \delta (\epsilon _{0})\!\,}
do not depend on
M
{\displaystyle M\!\,}
. With this in mind, note that
∫
[
−
M
,
M
]
C
|
f
|
>
∫
x
0
x
0
+
δ
(
ϵ
0
)
|
f
|
>
ϵ
0
2
δ
(
ϵ
0
)
(*)
{\displaystyle \int _{[-M,M]^{C}}|f|>\int _{x_{0}}^{x_{0}+\delta (\epsilon _{0})}|f|>{\frac {\epsilon _{0}}{2}}\delta (\epsilon _{0})\qquad {\mbox{(*)}}\!\,}
Then,
0
=
lim
M
→
∞
∫
[
−
M
,
M
]
C
|
f
|
≥
ϵ
0
2
δ
(
ϵ
0
)
{\displaystyle 0=\lim _{M\rightarrow \infty }\int _{[-M,M]^{C}}|f|\geq {\frac {\epsilon _{0}}{2}}\delta (\epsilon _{0})\!\,}
which is a huge contradiction.
Therefore,
lim
|
x
|
→
∞
|
f
(
x
)
|
=
0
{\displaystyle \lim _{|x|\rightarrow \infty }|f(x)|=0\!\,}
Remark If we choose to work with the assumption that
lim
x
→
−
∞
|
f
|
≠
0
{\displaystyle \lim _{x\rightarrow -\infty }|f|\neq 0\!\,}
, then in (*), we just need to work with
∫
x
0
−
δ
(
ϵ
0
)
x
0
|
f
|
{\displaystyle \int _{x_{0}-\delta (\epsilon _{0})}^{x_{0}}|f|\!\,}
instead of the original one
Solution 1 (Alternate)
edit
By uniform continuity , for all
ϵ
>
0
{\displaystyle \epsilon >0\!\,}
, there exists
δ
(
ϵ
)
>
0
{\displaystyle \delta (\epsilon )>0\!\,}
such that for all
x
1
,
x
2
∈
R
{\displaystyle x_{1},x_{2}\in R\!\,}
,
|
f
(
x
1
)
−
f
(
x
2
)
|
<
ϵ
{\displaystyle |f(x_{1})-f(x_{2})|<\epsilon \!\,}
if
|
x
1
−
x
2
|
<
δ
(
ϵ
)
{\displaystyle |x_{1}-x_{2}|<\delta (\epsilon )\!\,}
Assume for the sake of contradiction there exists
ϵ
0
>
0
{\displaystyle \epsilon _{0}>0\!\,}
such that for all
M
>
0
{\displaystyle M>0\!\,}
, there exists
x
∈
R
{\displaystyle x\in R\!\,}
such that
|
x
|
>
M
{\displaystyle |x|>M\!\,}
and
|
f
(
x
)
|
≥
ϵ
0
{\displaystyle |f(x)|\geq \epsilon _{0}\!\,}
.
Let
M
=
1
{\displaystyle M=1\!\,}
, then there exists
x
1
{\displaystyle x_{1}\!\,}
such that
|
x
1
|
>
M
{\displaystyle |x_{1}|>M\!\,}
and
|
f
(
x
1
)
|
≥
ϵ
0
{\displaystyle |f(x_{1})|\geq \epsilon _{0}\!\,}
.
Let
M
=
|
x
1
|
+
3
δ
(
ϵ
0
)
{\displaystyle M=|x_{1}|+3\delta (\epsilon _{0})\!\,}
, then there exists
x
2
{\displaystyle x_{2}\!\,}
such that
|
x
2
|
>
M
{\displaystyle |x_{2}|>M\!\,}
and
|
f
(
x
2
)
|
≥
ϵ
0
{\displaystyle |f(x_{2})|\geq \epsilon _{0}\!\,}
.
Let
M
=
|
x
n
|
+
3
δ
(
ϵ
0
)
{\displaystyle M=|x_{n}|+3\delta (\epsilon _{0})\!\,}
, then there exists
x
n
+
1
{\displaystyle x_{n+1}\!\,}
such that
|
x
n
+
1
|
>
M
{\displaystyle |x_{n+1}|>M\!\,}
and
|
f
(
x
n
+
2
)
|
≥
ϵ
0
{\displaystyle |f(x_{n+2})|\geq \epsilon _{0}\!\,}
.
So we have
{
I
n
}
=
{
(
x
n
−
δ
(
ϵ
0
)
,
x
n
+
δ
(
ϵ
0
)
}
{\displaystyle \{I_{n}\}=\{(x_{n}-\delta (\epsilon _{0}),x_{n}+\delta (\epsilon _{0})\}\!\,}
with
I
i
∩
I
j
=
∅
{\displaystyle I_{i}\cap I_{j}=\emptyset \!\,}
if
i
≠
j
{\displaystyle i\neq j\!\,}
and
|
f
(
x
)
|
≥
ϵ
0
{\displaystyle |f(x)|\geq \epsilon _{0}\!\,}
for all
x
∈
I
n
{\displaystyle x\in I_{n}\!\,}
and for all
n
{\displaystyle n\!\,}
.
In other words, we are choosing disjoint subintervals of the real line that are of length
2
δ
(
ϵ
0
)
{\displaystyle 2\delta (\epsilon _{0})\!\,}
, centered around each
x
i
{\displaystyle x_{i}\!\,}
for
i
=
1
,
2
,
3
,
…
{\displaystyle i=1,2,3,\ldots \!\,}
, and separated by at least
δ
(
ϵ
0
)
{\displaystyle \delta (\epsilon _{0})\!\,}
.
Hence,
∫
R
|
f
(
x
)
|
d
x
≥
∑
n
=
1
∞
∫
I
n
|
f
(
x
)
|
d
x
≥
∑
n
=
1
∞
ϵ
0
∫
I
n
d
x
=
∑
n
=
1
∞
ϵ
0
⋅
2
δ
(
ϵ
0
)
=
+
∞
{\displaystyle {\begin{aligned}\int _{R}|f(x)|dx&\geq \sum _{n=1}^{\infty }\int _{I_{n}}|f(x)|dx\\&\geq \sum _{n=1}^{\infty }\epsilon _{0}\int _{I_{n}}dx\\&=\sum _{n=1}^{\infty }\epsilon _{0}\cdot 2\delta (\epsilon _{0})\\&=+\infty \end{aligned}}}
which contradicts the assumption that
f
∈
L
1
(
R
)
{\displaystyle f\in L^{1}(R)\!\,}
.
Therefore, for all
ϵ
>
0
{\displaystyle \epsilon >0\!\,}
there exists
M
>
0
{\displaystyle M>0\!\,}
such that for all
|
x
|
>
M
{\displaystyle |x|>M\!\,}
,
|
f
(
x
)
|
<
ϵ
{\displaystyle |f(x)|<\epsilon \!\,}
i.e.
lim
|
x
|
→
∞
f
(
x
)
=
0
{\displaystyle \lim _{|x|\rightarrow \infty }f(x)=0\!\,}
By absolute continuity , Fatou's Lemma , and hypothesis we have
∫
R
|
f
′
(
t
)
|
d
t
=
∫
R
lim
inf
t
→
0
+
|
f
(
x
+
t
)
−
f
(
x
)
t
|
d
x
≤
lim
inf
t
→
0
+
∫
R
|
f
(
x
+
t
)
−
f
(
x
)
t
|
d
x
=
0
{\displaystyle {\begin{aligned}\int _{R}|f^{\prime }(t)|dt&=\int _{R}{\underset {t\rightarrow 0^{+}}{\lim \inf }}\left|{\frac {f(x+t)-f(x)}{t}}\right|dx\\&\leq {\underset {t\rightarrow 0^{+}}{\lim \inf }}\int _{R}\left|{\frac {f(x+t)-f(x)}{t}}\right|dx\\&=0\end{aligned}}}
Hence
f
′
(
t
)
=
0
{\displaystyle f^{\prime }(t)=0\!\,}
a.e.
From the fundamental theorem of calculus, for all
x
∈
R
{\displaystyle x\in R\!\,}
,
f
(
x
)
−
f
(
0
)
=
∫
0
x
f
′
(
t
)
d
t
=
0
{\displaystyle f(x)-f(0)=\int _{0}^{x}f^{\prime }(t)dt=0}
i.e.
f
(
x
)
{\displaystyle f(x)\!\,}
is a constant
c
=
f
(
0
)
{\displaystyle c=f(0)\!\,}
.
Assume for the sake of contradiction that
|
c
|
>
0
{\displaystyle |c|>0\!\,}
, then
∫
R
|
f
(
x
)
|
d
x
=
∫
R
|
c
|
d
x
=
∞
{\displaystyle \int _{R}|f(x)|dx=\int _{R}|c|dx=\infty \!\,}
.
which contradicts the hypothesis
f
∈
L
1
(
R
)
{\displaystyle f\in L^{1}(R)\!\,}
. Hence,
|
c
|
=
0
{\displaystyle |c|=0\!\,}
i.e.
f
(
x
)
=
0
{\displaystyle f(x)=0\!\,}
for all
x
∈
R
{\displaystyle x\in R\!\,}
Suppose that
L
1
2
(
R
)
{\displaystyle L^{\frac {1}{2}}(R)\!\,}
is the set of all equivalence classes of measurable functions for which
∫
R
|
f
(
x
)
|
1
2
d
x
<
∞
{\displaystyle \int _{R}|f(x)|^{\frac {1}{2}}dx<\infty \!\,}
Show that it is a metric linear space with the metric
d
(
f
,
g
)
=
∫
R
|
f
(
x
)
−
g
(
x
)
|
1
2
d
x
{\displaystyle d(f,g)=\int _{R}|f(x)-g(x)|^{\frac {1}{2}}dx\!\,}
where
f
,
g
∈
L
1
2
(
R
)
{\displaystyle f,g\in L^{\frac {1}{2}}(R)\!\,}
.
"One-half" triangle inequality
edit
First, for all
a
,
b
≥
0
{\displaystyle a,b\geq 0\!\,}
,
(
a
+
b
)
≤
(
a
+
b
)
+
2
a
1
2
b
1
2
=
a
+
2
a
1
2
b
1
2
+
b
=
(
a
1
2
)
2
+
2
a
1
2
b
1
2
+
(
b
1
2
)
2
=
(
a
1
2
+
b
1
2
)
2
{\displaystyle {\begin{aligned}(a+b)&\leq (a+b)+2a^{\frac {1}{2}}b^{\frac {1}{2}}\\&=a+2a^{\frac {1}{2}}b^{\frac {1}{2}}+b\\&=(a^{\frac {1}{2}})^{2}+2a^{\frac {1}{2}}b^{\frac {1}{2}}+(b^{\frac {1}{2}})^{2}\\&=(a^{\frac {1}{2}}+b^{\frac {1}{2}})^{2}\end{aligned}}}
Taking square roots of both sides of the inequality yields,
(
a
+
b
)
1
2
≤
a
1
2
+
b
1
2
{\displaystyle (a+b)^{\frac {1}{2}}\leq a^{\frac {1}{2}}+b^{\frac {1}{2}}\!\,}
L^1/2 is Linear Space
edit
Hence for all
f
,
g
∈
L
1
2
{\displaystyle f,g\in L^{\frac {1}{2}}\!\,}
,
∫
R
|
a
f
(
x
)
+
b
g
(
x
)
|
1
2
d
x
≤
∫
R
(
|
a
|
1
2
|
f
(
x
)
|
1
2
+
|
b
|
1
2
|
g
(
x
)
|
1
2
)
d
x
=
|
a
|
1
2
∫
R
|
f
(
x
)
|
1
2
d
x
+
|
b
|
1
2
∫
R
|
g
(
x
)
|
1
2
d
x
<
∞
{\displaystyle {\begin{aligned}\int _{R}|af(x)+bg(x)|^{\frac {1}{2}}dx&\leq \int _{R}(|a|^{\frac {1}{2}}|f(x)|^{\frac {1}{2}}+|b|^{\frac {1}{2}}|g(x)|^{\frac {1}{2}})dx\\&=|a|^{\frac {1}{2}}\int _{R}|f(x)|^{\frac {1}{2}}dx+|b|^{\frac {1}{2}}\int _{R}|g(x)|^{\frac {1}{2}}dx\\&<\infty \end{aligned}}}
Hence,
L
1
2
{\displaystyle L^{\frac {1}{2}}\!\,}
is a linear space.
L^1/2 is Metric Space
edit
(
i
)
{\displaystyle (i)\!\,}
Since
d
(
f
,
g
)
≥
0
{\displaystyle d(f,g)\geq 0\!\,}
,
d
(
f
,
g
)
=
0
⟺
f
=
g
a
.
e
.
{\displaystyle d(f,g)=0\quad \Longleftrightarrow \quad f=g\,\,a.e.\!\,}
(
i
i
)
{\displaystyle (ii)\!\,}
Also, for all
f
,
g
,
h
∈
L
1
2
{\displaystyle f,g,h\in L^{\frac {1}{2}}\!\,}
,
d
(
f
,
g
)
=
∫
R
|
f
(
x
)
−
g
(
x
)
|
1
2
d
x
=
∫
R
(
|
f
(
x
)
−
h
(
x
)
+
h
(
x
)
−
g
(
x
)
|
1
2
d
x
≤
∫
R
(
|
f
(
x
)
−
h
(
x
)
|
+
|
h
(
x
)
−
g
(
x
)
|
)
1
2
d
x
≤
∫
R
|
f
(
x
)
−
h
(
x
)
|
1
2
d
x
+
∫
R
|
h
(
x
)
−
g
(
x
)
|
1
2
d
x
=
d
(
f
,
h
)
+
d
(
h
,
g
)
{\displaystyle {\begin{aligned}d(f,g)&=\int _{R}|f(x)-g(x)|^{\frac {1}{2}}dx\\&=\int _{R}(|f(x)-h(x)+h(x)-g(x)|^{\frac {1}{2}}dx\\&\leq \int _{R}(|f(x)-h(x)|+|h(x)-g(x)|)^{\frac {1}{2}}dx\\&\leq \int _{R}|f(x)-h(x)|^{\frac {1}{2}}dx+\int _{R}|h(x)-g(x)|^{\frac {1}{2}}dx\\&=d(f,h)+d(h,g)\end{aligned}}}
From
(
i
)
{\displaystyle (i)\!\,}
and
(
i
i
)
{\displaystyle (ii)\!\,}
, we conclude that
d
(
f
,
g
)
{\displaystyle d(f,g)\!\,}
is a metric space.
Show that with this metric
L
1
2
(
R
)
{\displaystyle L^{\frac {1}{2}}(R)}
is complete.
For
a
,
b
,
c
≥
0
{\displaystyle a,b,c\geq 0\!\,}
,
(
a
+
b
+
c
)
1
2
≤
a
1
2
+
(
b
+
c
)
1
2
≤
a
1
2
+
b
1
2
+
c
1
2
{\displaystyle (a+b+c)^{\frac {1}{2}}\leq a^{\frac {1}{2}}+(b+c)^{\frac {1}{2}}\leq a^{\frac {1}{2}}+b^{\frac {1}{2}}+c^{\frac {1}{2}}\!\,}
By induction, we then have for all
a
k
≥
0
{\displaystyle a_{k}\geq 0\!\,}
and all
k
{\displaystyle k\!\,}
(
∑
k
=
1
n
a
k
)
1
2
≤
∑
k
=
1
n
a
k
1
2
{\displaystyle \left(\sum _{k=1}^{n}a_{k}\right)^{\frac {1}{2}}\leq \sum _{k=1}^{n}a_{k}^{\frac {1}{2}}\!}
Work with Subsequence of Cauchy Sequence
edit
We can equivalently prove completeness by showing that a subsequence of a Cauchy sequence converges.
If a subsequence of a Cauchy sequence converges, then the Cauchy sequence converges.
Construct a subsequence
edit
Choose
{
f
n
}
{\displaystyle \{f_{n}\}\!\,}
such that for all
n
{\displaystyle n\!\,}
,
d
(
f
n
,
f
n
+
1
)
<
1
2
n
{\displaystyle d(f_{n},f_{n+1})<{\frac {1}{2^{n}}}\!\,}
Setup telescoping sum
edit
Rewrite
f
m
(
x
)
{\displaystyle f_{m}(x)\!\,}
as a telescoping sum (successive terms cancel out) i.e.
f
m
(
x
)
=
f
1
(
x
)
+
∑
n
=
1
m
−
1
(
f
n
+
1
(
x
)
−
f
n
(
x
)
)
⏟
g
m
−
1
(
x
)
{\displaystyle f_{m}(x)=f_{1}(x)+\underbrace {\sum _{n=1}^{m-1}(f_{n+1}(x)-f_{n}(x))} _{g_{m-1}(x)}\!\,}
.
The triangle inequality implies,
|
f
m
(
x
)
|
1
2
≤
|
f
1
(
x
)
|
1
2
+
|
g
m
−
1
(
x
)
|
1
2
{\displaystyle |f_{m}(x)|^{\frac {1}{2}}\leq |f_{1}(x)|^{\frac {1}{2}}+|g_{m-1}(x)|^{\frac {1}{2}}\!\,}
which means the sequence
|
f
m
(
x
)
|
1
2
{\displaystyle |f_{m}(x)|^{\frac {1}{2}}\!\,}
is always dominated by the sequence on the right hand side of the inequality.
Define a sequence {g}_m
edit
Let
g
m
(
x
)
=
∑
n
=
1
m
|
f
n
+
1
(
x
)
−
f
n
(
x
)
|
{\displaystyle g_{m}(x)=\sum _{n=1}^{m}|f_{n+1}(x)-f_{n}(x)|}
, then
g
m
(
x
)
≤
g
m
+
1
(
x
)
{\displaystyle g_{m}(x)\leq g_{m+1}(x)\!\,}
and
g
m
(
x
)
≥
0
{\displaystyle g_{m}(x)\geq 0\!\,}
.
In other words,
{
g
m
}
{\displaystyle \{g_{m}\}\!\,}
is a sequence of increasing, non-negative functions. Note that
g
{\displaystyle g\!\,}
, the limit of
{
g
m
}
{\displaystyle \{g_{m}\}\!\,}
as
m
→
∞
{\displaystyle m\rightarrow \infty \!\,}
, exists since
{
g
m
}
{\displaystyle \{g_{m}\}\!\,}
is increasing. (
g
{\displaystyle g\!\,}
is either a finite number
L
{\displaystyle L\!\,}
or
∞
{\displaystyle \infty \!\,}
.)
Also,
∫
R
|
g
m
(
x
)
|
1
2
d
x
=
∫
R
∑
n
=
1
m
|
f
n
+
1
(
x
)
−
f
n
(
x
)
|
1
2
d
x
=
∑
n
=
1
m
∫
R
|
f
n
+
1
(
x
)
−
f
n
(
x
)
|
1
2
d
x
⏟
d
(
f
n
+
1
,
f
n
)
≤
∑
n
=
1
m
1
2
n
≤
1
{\displaystyle {\begin{aligned}\int _{R}|g_{m}(x)|^{\frac {1}{2}}dx&=\int _{R}\sum _{n=1}^{m}|f_{n+1}(x)-f_{n}(x)|^{\frac {1}{2}}dx\\&=\sum _{n=1}^{m}\underbrace {\int _{R}|f_{n+1}(x)-f_{n}(x)|^{\frac {1}{2}}dx} _{d(f_{n+1},f_{n})}\\&\leq \sum _{n=1}^{m}{\frac {1}{2^{n}}}\\&\leq 1\end{aligned}}}
Hence, for all
m
{\displaystyle m\!\,}
∫
R
|
g
m
(
x
)
|
1
2
d
x
≤
1
{\displaystyle \int _{R}|g_{m}(x)|^{\frac {1}{2}}dx\leq 1\!\,}
Apply Monotone Convergence Theorem
edit
By the Monotone Convergence Theorem ,
∫
R
lim
m
→
∞
|
g
m
(
x
)
|
1
2
d
x
=
lim
m
→
∞
∫
R
|
g
m
(
x
)
|
1
2
d
x
≤
1
<
∞
{\displaystyle {\begin{aligned}\int _{R}\lim _{m\rightarrow \infty }|g_{m}(x)|^{\frac {1}{2}}dx&=\lim _{m\rightarrow \infty }\int _{R}|g_{m}(x)|^{\frac {1}{2}}dx\\&\leq 1\\&<\infty \end{aligned}}}
Hence,
lim
m
→
∞
g
m
(
x
)
∈
L
1
2
{\displaystyle \lim _{m\rightarrow \infty }g_{m}(x)\in L^{\frac {1}{2}}\!\,}
Apply Lebesgue Dominated Convergence Theorem
edit
From the Lebesgue dominated convergence theorem ,
∫
R
lim
m
→
∞
|
f
m
|
1
2
=
lim
m
→
∞
∫
R
|
f
m
|
1
2
≤
lim
m
→
∞
∫
R
|
f
1
(
x
)
|
1
2
+
∫
R
|
g
m
−
1
(
x
)
|
1
2
<
∞
{\displaystyle {\begin{aligned}\int _{R}\lim _{m\rightarrow \infty }|f_{m}|^{\frac {1}{2}}&=\lim _{m\rightarrow \infty }\int _{R}|f_{m}|^{\frac {1}{2}}\\&\leq \lim _{m\rightarrow \infty }\int _{R}|f_{1}(x)|^{\frac {1}{2}}+\int _{R}|g_{m-1}(x)|^{\frac {1}{2}}\\&<\infty \end{aligned}}}
where the last step follows since
f
1
,
g
m
−
1
∈
L
1
2
{\displaystyle f_{1},g_{m-1}\in L^{\frac {1}{2}}\!\,}
Hence,
lim
m
→
∞
f
m
∈
L
1
2
{\displaystyle \lim _{m\rightarrow \infty }f_{m}\in L^{\frac {1}{2}}\!\,}
i.e.
L
1
2
{\displaystyle L^{\frac {1}{2}}\!\,}
is complete.