We know that:
sin
2
θ
=
1
−
cos
2
θ
{\displaystyle \sin ^{2}\theta =1-\cos ^{2}\theta \,}
So do we really need the
sin
{\displaystyle \sin \,}
function?
Or put another way, could we have worked out all our interesting formulas for things like
cos
(
a
+
b
)
{\displaystyle \cos(a+b)\,}
in terms just of
cos
{\displaystyle \cos \,}
and then derived every formula that has a
sin
{\displaystyle \sin \,}
in it from that?
The answer is yes.
We don't need to have one geometric argument for
cos
(
a
+
b
)
{\displaystyle \cos(a+b)\,}
and then do another geometric argument for
sin
(
a
+
b
)
{\displaystyle \sin(a+b)\,}
. We could get our formulas for
sin
{\displaystyle \sin \,}
directly from formulas for
cos
{\displaystyle \cos \,}
To find a formula for
cos
(
θ
1
+
θ
2
)
{\displaystyle \cos(\theta _{1}+\theta _{2})\,}
in terms of
cos
(
θ
1
)
{\displaystyle \cos \left(\theta _{1}\right)}
and
cos
(
θ
2
)
{\displaystyle \cos \left(\theta _{2}\right)}
: construct two different right angle triangles each drawn with side
c
{\displaystyle c\,}
having the same length of one, but with
θ
1
≠
θ
2
{\displaystyle \theta _{1}\neq \theta _{2}}
, and therefore angle
ψ
1
≠
ψ
2
{\displaystyle \psi _{1}\neq \psi _{2}}
. Scale up triangle two so that side
a
2
{\displaystyle a_{2}\,}
is the same length as side
c
1
{\displaystyle c_{1}\,}
. Place the triangles so that side
c
1
{\displaystyle c_{1}\,}
is coincidental with side
a
2
{\displaystyle a_{2}\,}
, and the angles
θ
1
{\displaystyle \theta _{1}\,}
and
θ
2
{\displaystyle \theta _{2}\,}
are juxtaposed to form angle
θ
3
=
θ
1
+
θ
2
{\displaystyle \theta _{3}=\theta _{1}+\theta _{2}\,}
at the origin. The circumference of the circle within which triangle two is embedded (circle 2) crosses side
a
1
{\displaystyle a_{1}\,}
at point
g
{\displaystyle g\,}
, allowing a third right angle to be drawn from angle
φ
2
{\displaystyle \varphi _{2}}
to point
g
{\displaystyle g\,}
. Now reset the scale of the entire figure so that side
c
2
{\displaystyle c_{2}\,}
is considered to be of length 1. Side
a
2
{\displaystyle a_{2}\,}
coincidental with side
c
1
{\displaystyle c_{1}\,}
will then be of length
cos
(
θ
1
)
{\displaystyle \cos \left(\theta _{1}\right)}
, and so side
a
1
{\displaystyle a_{1}\,}
will be of length
cos
(
θ
1
)
⋅
cos
(
θ
2
)
{\displaystyle \cos \left(\theta _{1}\right)\cdot \cos \left(\theta _{2}\right)}
in which length lies point
g
{\displaystyle g\,}
. Draw a line parallel to line
a
1
{\displaystyle a_{1}\,}
through the right angle of triangle two to produce a fourth right angle triangle, this one embedded in triangle two. Triangle 4 is a scaled copy of triangle 1, because:
(1) it is right angled, and
(2)
θ
4
+
(
π
−
π
2
−
θ
1
−
θ
2
)
=
φ
2
=
π
−
π
2
−
θ
2
⇒
θ
4
=
θ
1
{\displaystyle \theta _{4}+(\pi -{\frac {\pi }{2}}-\theta _{1}-\theta _{2})=\varphi _{2}=\pi -{\frac {\pi }{2}}-\theta _{2}\Rightarrow \theta _{4}=\theta _{1}}
.
The length of side
b
4
{\displaystyle b_{4}\,}
is
c
o
s
(
φ
2
)
c
o
s
(
φ
4
)
=
c
o
s
(
φ
2
)
c
o
s
(
φ
1
)
{\displaystyle cos(\varphi _{2})cos(\varphi _{4})=cos(\varphi _{2})cos(\varphi _{1})}
as
θ
4
=
θ
1
{\displaystyle \theta _{4}\,=\theta _{1}\,}
. Thus point
g
{\displaystyle g\,}
is located at length:
c
o
s
(
θ
1
+
θ
2
)
=
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
−
c
o
s
(
φ
1
)
c
o
s
(
φ
2
)
,
{\displaystyle cos(\theta _{1}+\theta _{2})=cos(\theta _{1})cos(\theta _{2})-cos(\varphi _{1})cos(\varphi _{2}),}
where
θ
1
+
φ
1
=
θ
2
+
φ
2
=
π
2
{\displaystyle \theta _{1}+\varphi _{1}=\theta _{2}+\varphi _{2}={\frac {\pi }{2}}}
giving us the "Cosine Angle Sum Formula".
We can apply this formula immediately to sum two equal angles:
c
o
s
(
2
θ
)
=
c
o
s
(
θ
+
θ
)
=
c
o
s
(
θ
)
c
o
s
(
θ
)
−
c
o
s
(
φ
)
c
o
s
(
φ
)
=
c
o
s
(
θ
)
2
−
c
o
s
(
φ
)
2
{\displaystyle cos(2\theta )=cos(\theta +\theta )=cos(\theta )cos(\theta )-cos(\varphi )cos(\varphi )=cos(\theta )^{2}-cos(\varphi )^{2}}
(I)
where
θ
+
φ
=
π
2
{\displaystyle \theta +\varphi ={\frac {\pi }{2}}}
From the theorem of Pythagoras we know that:
a
2
+
b
2
=
c
2
{\displaystyle a^{2}+b^{2}=c^{2}\,}
in this case:
c
o
s
(
θ
)
2
+
c
o
s
(
φ
)
2
=
1
2
{\displaystyle cos(\theta )^{2}+cos(\varphi )^{2}=1^{2}}
⇒
c
o
s
(
φ
)
2
=
1
−
c
o
s
(
θ
)
2
{\displaystyle \Rightarrow cos(\varphi )^{2}=1-cos(\theta )^{2}}
where
θ
+
φ
=
π
2
{\displaystyle \theta +\varphi ={\frac {\pi }{2}}}
Substituting into (I) gives:
c
o
s
(
2
θ
)
=
c
o
s
(
θ
)
2
−
c
o
s
(
φ
)
2
{\displaystyle cos(2\theta )=cos(\theta )^{2}-cos(\varphi )^{2}}
=
c
o
s
(
θ
)
2
−
(
1
−
c
o
s
(
θ
)
2
)
{\displaystyle =cos(\theta )^{2}-(1-cos(\theta )^{2})\,}
=
2
c
o
s
(
θ
)
2
−
1
{\displaystyle =2cos(\theta )^{2}-1\,}
where
θ
+
φ
=
π
4
{\displaystyle \theta +\varphi ={\frac {\pi }{4}}}
which is identical to the "Cosine Double Angle Sum Formula":
2
c
o
s
(
δ
)
2
−
1
=
c
o
s
(
2
δ
)
{\displaystyle 2cos(\delta )^{2}-1=cos(2\delta )\,}
Pythagorean identity
edit
The price we have to pay for the notational convenience of this new function
s
i
n
(
)
{\displaystyle sin()\,}
is that we now have to answer questions like: Is there a "Sine Angle Sum Formula". Such questions can always be answered by taking the
c
o
s
(
)
{\displaystyle cos()\,}
form and selectively replacing
c
o
s
(
θ
)
2
{\displaystyle cos(\theta )^{2}\,}
by
1
−
s
i
n
(
θ
)
2
{\displaystyle 1-sin(\theta )^{2}\,}
and then using algebra to simplify the resulting equation. Applying this technique to the "Cosine Angle Sum Formula" produces:
c
o
s
(
θ
1
+
θ
2
)
=
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
−
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
{\displaystyle cos(\theta _{1}+\theta _{2})=cos(\theta _{1})cos(\theta _{2})-sin(\theta _{1})sin(\theta _{2})\,}
⇒
c
o
s
(
θ
1
+
θ
2
)
2
=
(
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
−
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
2
{\displaystyle \Rightarrow cos(\theta _{1}+\theta _{2})^{2}=(cos(\theta _{1})cos(\theta _{2})-sin(\theta _{1})sin(\theta _{2}))^{2}\,}
⇒
1
−
c
o
s
(
θ
1
+
θ
2
)
2
=
1
−
(
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
−
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
2
{\displaystyle \Rightarrow 1-cos(\theta _{1}+\theta _{2})^{2}=1-(cos(\theta _{1})cos(\theta _{2})-sin(\theta _{1})sin(\theta _{2}))^{2}\,}
⇒
s
i
n
(
θ
1
+
θ
2
)
2
=
1
−
(
c
o
s
(
θ
1
)
2
c
o
s
(
θ
2
)
2
+
s
i
n
(
θ
1
)
2
s
i
n
(
θ
2
)
2
−
2
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
{\displaystyle \Rightarrow sin(\theta _{1}+\theta _{2})^{2}=1-(cos(\theta _{1})^{2}cos(\theta _{2})^{2}+sin(\theta _{1})^{2}sin(\theta _{2})^{2}-2cos(\theta _{1})cos(\theta _{2})sin(\theta _{1})sin(\theta _{2}))\,}
-- Pythagoras on left, multiply out right hand side
=
1
−
(
c
o
s
(
θ
1
)
2
(
1
−
s
i
n
(
θ
2
)
2
)
+
s
i
n
(
θ
1
)
2
(
1
−
c
o
s
(
θ
2
)
2
)
−
2
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
{\displaystyle =1-(cos(\theta _{1})^{2}(1-sin(\theta _{2})^{2})+sin(\theta _{1})^{2}(1-cos(\theta _{2})^{2})-2cos(\theta _{1})cos(\theta _{2})sin(\theta _{1})sin(\theta _{2}))\,}
-- Carefully selected Pythagoras again on the left hand side
=
1
−
(
c
o
s
(
θ
1
)
2
−
c
o
s
(
θ
1
)
2
s
i
n
(
θ
2
)
2
+
s
i
n
(
θ
1
)
2
−
s
i
n
(
θ
1
)
2
c
o
s
(
θ
2
)
2
−
2
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
{\displaystyle =1-(cos(\theta _{1})^{2}-cos(\theta _{1})^{2}sin(\theta _{2})^{2}+sin(\theta _{1})^{2}-sin(\theta _{1})^{2}cos(\theta _{2})^{2}-2cos(\theta _{1})cos(\theta _{2})sin(\theta _{1})sin(\theta _{2}))\,}
-- Multiplied out
=
1
−
(
1
−
c
o
s
(
θ
1
)
2
s
i
n
(
θ
2
)
2
−
s
i
n
(
θ
1
)
2
c
o
s
(
θ
2
)
2
−
2
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
)
{\displaystyle =1-(1-cos(\theta _{1})^{2}sin(\theta _{2})^{2}-sin(\theta _{1})^{2}cos(\theta _{2})^{2}-2cos(\theta _{1})cos(\theta _{2})sin(\theta _{1})sin(\theta _{2}))\,}
-- Carefully selected Pythagoras
=
c
o
s
(
θ
1
)
2
s
i
n
(
θ
2
)
2
+
s
i
n
(
θ
1
)
2
c
o
s
(
θ
2
)
2
+
2
c
o
s
(
θ
1
)
c
o
s
(
θ
2
)
s
i
n
(
θ
1
)
s
i
n
(
θ
2
)
{\displaystyle =cos(\theta _{1})^{2}sin(\theta _{2})^{2}+sin(\theta _{1})^{2}cos(\theta _{2})^{2}+2cos(\theta _{1})cos(\theta _{2})sin(\theta _{1})sin(\theta _{2})\,}
-- Algebraic simplification
=
(
c
o
s
(
θ
1
)
s
i
n
(
θ
2
)
+
s
i
n
(
θ
1
)
c
o
s
(
θ
2
)
)
2
{\displaystyle =(cos(\theta _{1})sin(\theta _{2})+sin(\theta _{1})cos(\theta _{2}))^{2}\,}
taking the square root of both sides produces the "Sine Angle Sum Formula"
⇒
s
i
n
(
θ
1
+
θ
2
)
=
c
o
s
(
θ
1
)
s
i
n
(
θ
2
)
+
s
i
n
(
θ
1
)
c
o
s
(
θ
2
)
{\displaystyle \Rightarrow sin(\theta _{1}+\theta _{2})=cos(\theta _{1})sin(\theta _{2})+sin(\theta _{1})cos(\theta _{2})}
We can use a similar technique to find the "Sine Half Angle Formula" from the "Cosine Half Angle Formula":
c
o
s
(
θ
2
)
=
1
+
c
o
s
(
θ
)
2
{\displaystyle cos\left({\frac {\theta }{2}}\right)={\sqrt {\frac {1+cos(\theta )}{2}}}}
We know that
1
−
c
o
s
(
θ
2
)
2
=
s
i
n
(
θ
2
)
2
{\displaystyle 1-cos\left({\frac {\theta }{2}}\right)^{2}=sin\left({\frac {\theta }{2}}\right)^{2}}
, so squaring both sides of the "Cosine Half Angle Formula" and subtracting from one:
⇒
1
−
c
o
s
(
θ
2
)
2
=
1
−
1
+
c
o
s
(
θ
)
2
{\displaystyle \Rightarrow 1-cos\left({\frac {\theta }{2}}\right)^{2}=1-{\frac {1+cos(\theta )}{2}}}
⇒
s
i
n
(
θ
2
)
2
=
1
−
c
o
s
(
θ
)
2
{\displaystyle \Rightarrow sin\left({\frac {\theta }{2}}\right)^{2}={\frac {1-cos(\theta )}{2}}}
⇒
s
i
n
(
θ
2
)
=
1
−
c
o
s
(
θ
)
2
{\displaystyle \Rightarrow sin\left({\frac {\theta }{2}}\right)={\sqrt {\frac {1-cos(\theta )}{2}}}}
So far so good, but we still have a
c
o
s
(
θ
)
2
{\displaystyle {\frac {cos(\theta )}{2}}}
to get rid of. Use Pythagoras again to get the "Sine Half Angle Formula":
s
i
n
(
θ
2
)
=
1
−
1
−
s
i
n
(
θ
)
2
2
{\displaystyle sin\left({\frac {\theta }{2}}\right)={\sqrt {\frac {1-{\sqrt {1-sin(\theta )^{2}}}}{2}}}}
or perhaps a little more legibly as:
s
i
n
(
θ
2
)
=
1
2
1
−
1
−
s
i
n
(
θ
)
2
{\displaystyle sin\left({\frac {\theta }{2}}\right)={\sqrt {\frac {1}{2}}}{\sqrt {1-{\sqrt {1-sin(\theta )^{2}}}}}}