# Transportation Geography and Network Science/Shared micromobility networks

## BackgroundEdit

**Shared Micromobility** is a range of small and lightweight vehicles made available for shared use to individuals on a short-term basis for a price or free
^{[1]}.
The station-based bicycle-sharing system allows people to borrow a bike from a station and return it at another station belonging to the same system. There are docks in each station as special racks to lock bikes. The dock controlled by the computer will release the bike after the user enters payment information. To return the bike, the user needs to lock it by moving it into an empty dock. Other systems are the short-term checkout, the long-term checkout, the coin deposit stations and the dockless.

### DevicesEdit

Shared Micromobility devices can be human-powered or electric. The e-scooter, bike and e-bike are the mainstream in 2020^{[1]}. Human-powered devices are considered to be low speed (top speed of 8 miles per hour (mph)), while electric devices can have sped up 20 mph
^{[2]}.
Any vehicle with an internal combustion engine cannot be defined as micromobility, nor can devices with top speeds above 20mph.

### Usage in the United StatesEdit

This bar graph presents the usage of shared micromobility in the United States from 2010 to 2019. Usage measures the number of the trip generated by riding those devices. In the first three years, the usage of shared micromobility gradually increased year by year, while the data is doubled in the fourth year, then it backs to steady development. With the introduction of new technologies scooter and dockless bike share in 2018, more users entered the market, and the trip increased dramatically from this year. In 2019, Station based bike share maintained a continuous growth trend and reached 40 million trips, and dockless e-bikes had the same growth trend (10M trips), while the usage of scooters surged to 86 million trips
^{[1]}.

## Edit

Wu and Kim (2020)
^{[3]}
demonstrate how shared micromobility networks can be represented as a directed and weighted graph . Their work focuses on the station-based bike sharing system, but these concepts can also be applied to dockless system and other sharing systems.

### Edit

#### VerticesEdit

Vertices represent bike stations (nodes).

#### EdgesEdit

Edges represents links connecting any two bike stations.

#### The weight of edgesEdit

Weight is defined as the cycling distance between two stations.

#### The Availability of the Trip between Two StationsEdit

A = {a_{ij}} is an adjacent matrix representing the graph in a new way. The a_{ij} ranges from 0 to 1, indicating if there is at least one trip from the station i to station j.

## Edit

### Network structureEdit

The **degree distribution** is the proportion of k-degree nodes over the whole network, which is written as:

where is the number of nodes that have a degree
^{[4]}.

The **average path length**
^{[5]} is the average number of steps along the shortest paths for all node pairs in the entire network, which is measured by:

where is the number of edges through the shortest path between node and node .

The **local clustering coefficient**^{[4]} is used to measure the probability that the neighborhood of can be connected, calculated by:

where is the actual number of edges between the connected neighbors of the node , and is the number of neighbors of the node .

The **neighbors Ni** of the node are expressed as:

The **global clustering coefficient**
^{[6]}is the ratio of the number of closed triplets to the total number of triplets, calculated by:

### Node centralityEdit

In order to measure connectivity, accessibility, and intermediateness of stations in bike-sharing networks respectively, Wu and Kim measured following centrality indices.

**Degree centrality**:

(if there is a trip from node to node , , otherwise )

**Closeness centrality**:

where is the shortest path length from node to the given node .

**Betweenness centrality**^{[7]}:

where is the total number of shortest paths from node to node , and is the number of shortest paths that pass through the node .

### Spatial autocorrelation analysisEdit

Wu and Kim conducted this analysis to measure the degree of clustering among observations in geographical space.

The **global spatial autocorrelation indicato**r, called Global Moran's I^{[8]}, can be measured by:

where is the number of observations;

is the variable of interest;

is the spatial units;

is the mean of ;

is the matrix of spatial weights which is expressed by the inverse distance between and ;

is the sum of all spatial weights.

The **local indicator of spatial association (LISA)**^{[9]} can be measured by:

where is the variance of .

## Edit

#### Small WorldEdit

Wu and Kim summarized the network structure measures of the five bike-sharing networks compared to those of random networks with the same number of nodes and edges. The findings show these bike-sharing networks have a shorter average path length and a larger global clustering coefficient, which indicate that bike-sharing networks have small-world properties.

#### Not a Scale-Free NetworkEdit

Wu and Kim also looked for scale-free network features among five bike-sharing networks, and found that the cumulative degree distributions of the network in Washington, D.C. follows a power-law with exponential cutoff distribution, while other networks follow an exponential distribution.

## ReferencesEdit

- ↑
^{a}^{b}^{c}^{d}"Shared Micromobility in the U.S.: 2019". The National Asssociation of City Transportation Officials (NACTO). December 2019. https://nacto.org/shared-micromobility-2019/. Retrieved 2020-09-19. - ↑ "The Basics of Micromobility and Related Motorized Devices for Personal Transport". Pedestrian and Bicycle Information Center (PBIC)). https://nacto.org/shared-micromobility-2019/. Retrieved 2020-09-19.
- ↑
^{a}^{b}^{c}"Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China". Transportation Research Part A: Policy and Practice. 19 August 2020. https://www.journals.elsevier.com/transportation-research-part-a-policy-and-practice. Retrieved 2020-09-20. - ↑
^{a}^{b}"Emergence of Scaling in Random Networks". Science. 1999. http://science.sciencemag.org/content/286/5439/509.abstract. Retrieved 2020-10-18. - ↑ "Collective dynamics of ‘small-world’ networks". Nature. 1998. https://doi.org/10.1038/30918. Retrieved 2020-10-18.
- ↑ "Social network analysis: Methods and applications". Cambridge university press. 1994.
- ↑ "A Set of Measures of Centrality Based on Betweenness". [American Sociological Association, Sage Publications, Inc.]. 1977. http://www.jstor.org/stable/3033543. Retrieved 2020-09-14.
- ↑ "Notes on continuous stochastic phenomena.". Biometrika. January 2020.
- ↑ "Local Indicators of Spatial Association—LISA". Geographical Analysis. 1995. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029507498&doi=10.1111%2Fj.1538-4632.1995.tb00338.x&partnerID=40&md5=b7f747b3652d6ecbd725804433210989. Retrieved 2020-09-14.