Topology/Tangent Spaces

Topology
 ← Manifolds/Categories of Manifolds Tangent Spaces Vector Bundles → 


Briefly, a tangent is a derivative of a curve. Translated into topology this means that you can effectively remove one dimension from a picture. Typically, when working with space time we can can perform one of two operations: Either remove time as a way to see frozen 3D images or we can remove one spatial dimension and therefore represent space time as a curved surface (the net like drawings so typically used to represent topological surfaces in pictures or such phenomena as black holes which are often drawn as shrinking cones).

Tangent spaces are therefore only a representation of what we understand to be one dimension simpler than the problems of topology. It is a useful tool for visualising space time arguments and positions.

Euclidean prelude

edit

So far we have defined smooth maps on smooth manifolds by requiring the corresponding maps on euclidean space to be smooth. In this section we will generalize the notion of derivative on euclidean space to a notion of the derivative of functions between manifolds.


Recall our definition of the derivative on euclidean space:

Definition 1: Let  . Then the derivative of   at  , if it exists, is a linear map   such that

 


Remark 2:   is unique if it exists, and can be identified with the jacobian matrix  . This is left as an exercise to the reader. This way of defining the derivative does nt, unfortunately, lend itself to generalization to the manifold level. Instead, we will construct another definition of the derivative on euclidean space.


Definition 3: A smooth curve on   is a smooth function  . Let   be smooth curves on   such that  . Define the equivalence relation  . Define the tangent space of   at   as the space   of all equivalence classes   of smooth curves   on   such that  .


Remark 4: Note that we only need smooth curves to be defined on an open subset of   containing  .


Lemma 5:   is isomorphic to   as a vector space for any  .

Proof: Since for any smooth curve   on  ,   is a vector in  , there is a natural bijection  . Let   be this bijection, and give   the vector space structure  , and   becomes an isomorphism of vector spaces.


Remark 6: Unlike  ,   does not have a natural basis.


Lemma 7: Let   be a smooth curve on   with   and  . Then   where  .

Proof: First off, note that  , so it makes sense to compare them. Secondly,  , so  .


Definition 8: Let   be a smooth function. Then the differential of   at   is the map   given by  .


Lemma 9:   is well defined.

Proof: Let   where  . Then   by the chain rule and using the usual derivative, therefore   and so   is well defined.


Lemma 10: Let  . Then if  , then  .

Proof: Let   be any curve at  . Then if   we have  .


Thus the differential encodes the information about the derivative. However, it also encodes information about  . Unlike the previous definition of the derivative, the differential can, with some slight modifications, be generalized to work on manifolds. That is the topic of the next subsection.


Tangent Spaces

edit

Definition 11: A smooth curve on a manifold   at   is a function   such that  . If   are smooth curves on   at  , we define the equivalence relation   if and only if there exists a chart   with   such that  .


Remark 12: We can differentiate   since it is a function between euclidean spaces, for which we already have a developed theory of differentiation. Also, the equivalence relation is well defined since if it holds for one chart, it holds for all compatible charts as well.


Definition 13: The tangent space of   at   is the space of all equivalence classes of curves on   at  .


Topology
 ← Manifolds/Categories of Manifolds Tangent Spaces Vector Bundles →