Home
Random
Log in
Settings
Donations
About Wikibooks
Disclaimers
Search
Topological Vector Spaces/Direct sums
Language
Watch
Edit
<
Topological Vector Spaces
Exercises
edit
Let
E
{\displaystyle E}
be a TVS. Prove that all finite-dimensional subspaces of
E
{\displaystyle E}
have a topological complement if and only if for every
x
∉
{
0
}
¯
{\displaystyle x\notin {\overline {\{0\}}}}
, there exists
x
′
∈
E
′
{\displaystyle x'\in E'}
so that
x
′
(
x
)
≠
0
{\displaystyle x'(x)\neq 0}
.