Proof: Let any element
∑
j
=
1
n
f
j
⊗
g
j
{\displaystyle \sum _{j=1}^{n}f_{j}\otimes g_{j}}
of
H
1
⊗
H
2
{\displaystyle H_{1}\otimes H_{2}}
be given; by definition, each element of
H
1
⊗
H
2
{\displaystyle H_{1}\otimes H_{2}}
may be approximated by such elements. Let
ϵ
>
0
{\displaystyle \epsilon >0}
. Then by definition of an orthonormal basis, we find
m
j
,
l
j
{\displaystyle m_{j},l_{j}}
for
j
∈
[
n
]
{\displaystyle j\in [n]}
and
α
j
,
k
,
β
j
,
k
,
λ
j
,
k
,
μ
j
,
k
{\displaystyle \alpha _{j,k},\beta _{j,k},\lambda _{j,k},\mu _{j,k}}
for
j
∈
[
n
]
{\displaystyle j\in [n]}
and then
k
∈
[
m
j
]
{\displaystyle k\in [m_{j}]}
resp.
[
l
j
]
{\displaystyle [l_{j}]}
such that
‖
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
−
f
j
‖
<
ϵ
{\displaystyle \left\|\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}-f_{j}\right\|<\epsilon }
and
‖
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
−
g
j
‖
<
ϵ
{\displaystyle \left\|\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}-g_{j}\right\|<\epsilon }
.
Then note that by the triangle inequality,
‖
∑
j
=
1
n
f
j
⊗
g
j
−
∑
j
=
1
n
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
≤
∑
j
=
1
n
‖
f
j
⊗
g
j
−
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
{\displaystyle \left\|\sum _{j=1}^{n}f_{j}\otimes g_{j}-\sum _{j=1}^{n}\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes \left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|\leq \sum _{j=1}^{n}\left\|f_{j}\otimes g_{j}-\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes \left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|}
.
Now fix
j
∈
[
n
]
{\displaystyle j\in [n]}
. Then by the triangle inequality,
‖
f
j
⊗
g
j
−
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
≤
‖
f
j
⊗
g
j
−
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
g
j
‖
+
‖
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
g
j
−
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
=
‖
f
j
−
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
‖
‖
g
j
‖
+
‖
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
‖
‖
g
j
−
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
≤
ϵ
(
‖
g
j
‖
+
‖
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
‖
)
.
{\displaystyle {\begin{aligned}\left\|f_{j}\otimes g_{j}-\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes \left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|&\leq \left\|f_{j}\otimes g_{j}-\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes g_{j}\right\|+\left\|\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes g_{j}-\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes \left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|\\&=\left\|f_{j}-\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\right\|\|g_{j}\|+\left\|\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right\|\left\|g_{j}-\left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|\\&\leq \epsilon \left(\|g_{j}\|+\left\|\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right\|\right).\end{aligned}}}
In total, we obtain that
‖
∑
j
=
1
n
f
j
⊗
g
j
−
∑
j
=
1
n
(
∑
k
=
1
m
j
α
j
,
k
e
λ
j
,
k
)
⊗
(
∑
k
=
1
l
j
β
j
,
k
f
μ
j
,
k
)
‖
≤
ϵ
∑
j
=
1
n
(
‖
g
j
‖
+
2
‖
f
j
‖
)
{\displaystyle \left\|\sum _{j=1}^{n}f_{j}\otimes g_{j}-\sum _{j=1}^{n}\left(\sum _{k=1}^{m_{j}}\alpha _{j,k}e_{\lambda _{j,k}}\right)\otimes \left(\sum _{k=1}^{l_{j}}\beta _{j,k}f_{\mu _{j,k}}\right)\right\|\leq \epsilon \sum _{j=1}^{n}\left(\|g_{j}\|+2\|f_{j}\|\right)}
(assuming that the given sum approximates
f
j
{\displaystyle f_{j}}
well enough) which is arbitrarily small, so that the span of tensors of the form
e
λ
⊗
f
μ
{\displaystyle e_{\lambda }\otimes f_{\mu }}
is dense in
H
1
⊗
H
2
{\displaystyle H_{1}\otimes H_{2}}
.
Now we claim that the basis is orthonormal. Indeed, suppose that
(
λ
,
μ
)
≠
(
λ
′
,
μ
′
)
{\displaystyle (\lambda ,\mu )\neq (\lambda ',\mu ')}
. Then
⟨
e
λ
⊗
f
μ
,
e
λ
′
⊗
f
μ
′
⟩
=
⟨
e
λ
,
e
λ
′
⟩
⟨
f
μ
,
f
μ
′
⟩
=
0
{\displaystyle \langle e_{\lambda }\otimes f_{\mu },e_{\lambda '}\otimes f_{\mu '}\rangle =\langle e_{\lambda },e_{\lambda '}\rangle \langle f_{\mu },f_{\mu '}\rangle =0}
.
Similarly, the above expression evaluates to
1
{\displaystyle 1}
when
λ
=
λ
′
{\displaystyle \lambda =\lambda '}
and
μ
=
μ
′
{\displaystyle \mu =\mu '}
. Hence,
(
e
λ
⊗
e
μ
)
(
λ
,
μ
)
∈
Λ
×
M
{\displaystyle (e_{\lambda }\otimes e_{\mu })_{(\lambda ,\mu )\in \Lambda \times \mathrm {M} }}
does constitute an orthonormal basis of
H
1
⊗
H
2
{\displaystyle H_{1}\otimes H_{2}}
.
◻
{\displaystyle \Box }