In a triangle, if a line segment connects the midpoints of two sides, then this line segment is parallel to the third side and half its length.
Proof with the help of Congruent Triangles
edit
The construction for the mid-point theorem's proof with similar triangles
Proposition: Let
D
{\displaystyle D}
and
E
{\displaystyle E}
be the midpoints of
A
C
{\displaystyle AC}
and
B
C
{\displaystyle BC}
in the triangle
A
B
C
{\displaystyle ABC}
. It is to be proved that,
D
E
∥
A
B
{\displaystyle DE\parallel AB}
and;
D
E
=
1
2
A
B
{\displaystyle DE={\frac {1}{2}}AB}
.
Construction: Add
D
{\displaystyle D}
and
E
{\displaystyle E}
, extend
D
E
{\displaystyle DE}
to
F
{\displaystyle F}
as
E
F
=
D
E
{\displaystyle EF=DE}
, and add
B
{\displaystyle B}
and
F
{\displaystyle F}
.
Proof: [1] In the triangles
Δ
C
D
E
{\displaystyle \Delta CDE}
and
Δ
E
B
F
,
{\displaystyle \Delta EBF,}
C
E
=
B
E
{\displaystyle CE=BE}
; [Given]
D
E
=
E
F
{\displaystyle DE=EF}
; [According to the construction]
∠
C
E
D
=
∠
A
E
F
{\displaystyle \angle CED=\angle AEF}
; [Vertical Angles]
∴
Δ
C
D
E
≅
Δ
E
B
F
{\displaystyle \Delta CDE\cong \Delta EBF}
; [Side-Angle-Side theorem]
So,
∠
C
D
E
=
∠
B
F
E
{\displaystyle \angle CDE=\angle BFE}
∴
C
D
∥
B
F
{\displaystyle CD\parallel BF}
Or,
A
D
∥
B
F
{\displaystyle AD\parallel BF}
and
C
D
=
B
F
=
D
A
{\displaystyle CD=BF=DA}
Therefore,
A
D
F
B
{\displaystyle ADFB}
is a parallelogram.
∴
D
F
∥
A
B
{\displaystyle DF\parallel AB}
or
D
E
∥
A
B
{\displaystyle DE\parallel AB}
[2]
D
F
=
A
B
{\displaystyle DF=AB}
Or
D
E
+
E
F
=
A
B
{\displaystyle DE+EF=AB}
Or,
D
E
+
D
E
=
A
B
{\displaystyle DE+DE=AB}
[As,
Δ
C
D
E
≅
Δ
E
B
F
{\displaystyle \Delta CDE\cong \Delta EBF}
]
Or,
2
D
E
=
A
B
{\displaystyle 2DE=AB}
Or,
D
E
=
1
2
A
B
{\displaystyle DE={\frac {1}{2}}AB}
∴ In the triangle
Δ
A
B
C
,
{\displaystyle \Delta ABC,}
D
E
∥
A
B
{\displaystyle DE\parallel AB}
and
D
E
=
1
2
A
B
{\displaystyle DE={\frac {1}{2}}AB}
, where
D
{\displaystyle D}
and
E
{\displaystyle E}
are the midpoints of
A
C
{\displaystyle AC}
and
B
C
{\displaystyle BC}
. [Proved]
Proof with the help of Coordinate Geometry
edit
Proposition: Let
D
{\displaystyle D}
and
E
{\displaystyle E}
be the midpoints of
A
C
{\displaystyle AC}
and
A
B
{\displaystyle AB}
in the triangle
A
B
C
{\displaystyle ABC}
, where the coordinates of
A
,
B
,
C
{\displaystyle A,B,C}
are
A
(
x
1
,
y
1
)
,
B
(
x
2
,
y
2
)
,
C
(
x
3
,
y
3
)
{\displaystyle A(x_{1},y_{1}),B(x_{2},y_{2}),C(x_{3},y_{3})}
. It is to be proved that,
D
E
=
1
2
B
C
{\displaystyle DE={\frac {1}{2}}BC}
and
D
E
∥
B
C
{\displaystyle DE\parallel BC}
Proof: [1]
The distance of the segment
B
C
=
(
x
3
−
x
2
)
2
+
(
y
3
−
y
2
)
2
{\displaystyle BC={\sqrt {(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}}}
The midpoint of
A
(
x
1
,
y
1
)
{\displaystyle A(x_{1},y_{1})}
and
C
(
x
3
,
y
3
)
{\displaystyle C(x_{3},y_{3})}
is
D
(
x
1
+
x
3
2
,
y
1
+
y
3
2
)
{\displaystyle D({\frac {x_{1}+x_{3}}{2}},{\frac {y_{1}+y_{3}}{2}})}
.
In the same way, The midpoint of
A
(
x
1
,
y
1
)
{\displaystyle A(x_{1},y_{1})}
and
B
(
x
2
,
y
2
)
{\displaystyle B(x_{2},y_{2})}
is
E
(
x
1
+
x
2
2
,
y
1
+
y
2
2
)
{\displaystyle E({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}})}
∴ The distance of
D
E
=
(
x
1
+
x
3
2
−
x
1
+
x
2
2
)
2
+
(
y
1
+
y
3
2
−
y
1
+
y
2
2
)
2
{\displaystyle DE={\sqrt {({\frac {x_{1}+x_{3}}{2}}-{\frac {x_{1}+x_{2}}{2}})^{2}+({\frac {y_{1}+y_{3}}{2}}-{\frac {y_{1}+y_{2}}{2}})^{2}}}}
=
(
x
1
+
x
3
−
x
1
−
x
2
2
)
2
+
(
y
1
+
y
3
−
y
1
−
y
2
2
)
2
{\displaystyle ={\sqrt {({\frac {x_{1}+x_{3}-x_{1}-x_{2}}{2}})^{2}+({\frac {y_{1}+y_{3}-y_{1}-y_{2}}{2}})^{2}}}}
=
(
x
3
−
x
2
)
2
4
+
(
y
3
−
y
2
)
2
4
{\displaystyle ={\sqrt {{\frac {(x_{3}-x_{2})^{2}}{4}}+{\frac {(y_{3}-y_{2})^{2}}{4}}}}}
=
(
x
3
−
x
2
)
2
+
(
y
3
−
y
2
)
2
4
{\displaystyle ={\sqrt {\frac {(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}{4}}}}
=
(
x
3
−
x
2
)
2
+
(
y
3
−
y
2
)
2
2
{\displaystyle ={\frac {\sqrt {(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}}{2}}}
=
1
2
B
C
{\displaystyle ={\frac {1}{2}}BC}
; [As,
B
C
=
(
x
3
−
x
2
)
2
+
(
y
3
−
y
2
)
2
{\displaystyle BC={\sqrt {(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}}}
]
[2]
The slope of
B
C
,
{\displaystyle BC,}
m
1
=
y
2
−
y
3
x
2
−
x
3
{\displaystyle m_{1}={\frac {y_{2}-y_{3}}{x_{2}-x_{3}}}}
The slope of
D
E
,
{\displaystyle DE,}
m
2
=
y
1
+
y
2
2
−
y
1
+
y
3
2
x
1
+
x
2
2
−
x
1
+
x
3
2
{\displaystyle m_{2}={\frac {{\frac {y_{1}+y_{2}}{2}}-{\frac {y_{1}+y_{3}}{2}}}{{\frac {x_{1}+x_{2}}{2}}-{\frac {x_{1}+x_{3}}{2}}}}}
=
y
1
+
y
2
−
y
1
−
y
3
2
x
1
+
x
2
−
x
1
−
x
3
2
{\displaystyle ={\frac {\frac {y_{1}+y_{2}-y_{1}-y_{3}}{2}}{\frac {x_{1}+x_{2}-x_{1}-x_{3}}{2}}}}
=
y
2
−
y
3
2
x
2
−
x
3
2
{\displaystyle ={\frac {\frac {y_{2}-y_{3}}{2}}{\frac {x_{2}-x_{3}}{2}}}}
=
y
2
−
y
3
x
2
−
x
3
{\displaystyle ={\frac {y_{2}-y_{3}}{x_{2}-x_{3}}}}
=
m
1
{\displaystyle =m_{1}}
;
[As,
m
1
=
y
2
−
y
3
x
2
−
x
3
{\displaystyle m_{1}={\frac {y_{2}-y_{3}}{x_{2}-x_{3}}}}
]
Therefore,
D
E
∥
B
C
{\displaystyle DE\parallel BC}
∴ In the triangle
Δ
A
B
C
,
{\displaystyle \Delta ABC,}
D
E
∥
B
C
{\displaystyle DE\parallel BC}
and
D
E
=
1
2
B
C
{\displaystyle DE={\frac {1}{2}}BC}
, where
D
{\displaystyle D}
and
E
{\displaystyle E}
are the midpoints of
A
C
{\displaystyle AC}
and
A
B
{\displaystyle AB}
. [Proved]