This Quantum World/Appendix/Relativity/Lorentz contraction time dilation

Lorentz contraction, time dilatation

edit

Imagine a meter stick at rest in   At the time   its ends are situated at the points   and   At the time   they are situated at the points   and   which are less than a meter apart. Now imagine a stick (not a meter stick) at rest in   whose end points at the time   are O and C. In   they are a meter apart, but in the stick's rest-frame they are at   and   and thus more than a meter apart. The bottom line: a moving object is contracted (shortened) in the direction in which it is moving.


 


Next imagine two clocks, one ( ) at rest in   and located at   and one ( ) at rest in   and located at   At     indicates that one second has passed, while at   (which in   is simultaneous with  ),   indicates that more than a second has passed. On the other hand, at   (which in   is simultaneous with  ),   indicates that less than a second has passed. The bottom line: a moving clock runs slower than a clock at rest.

Example: Muons (  particles) are created near the top of the atmosphere, some ten kilometers up, when high-energy particles of cosmic origin hit the atmosphere. Since muons decay spontaneously after an average lifetime of 2.2 microseconds, they don't travel much farther than 600 meters. Yet many are found at sea level. How do they get that far?

The answer lies in the fact that most of them travel at close to the speed of light. While from its own point of view (that is, relative to the inertial system in which it is at rest), a muon only lives for about 2 microseconds, from our point of view (that is, relative to an inertial system in which it travels close to the speed of light), it lives much longer and has enough time to reach the Earth's surface.