Structural Biochemistry/Medicinal Chemistry

What is Medicinal ChemistryEdit

Medicinal chemistry is a field in which scientists use chemistry techniques to develop pharmaceuticals for use in medicine. In the beginning, medicinal chemists wanted to be able to extraction useful molecules from plants. Today, scientists want to create analogs of molecules found in plants and synthesize new products that promote high potency levels and good pharmokinetics. These new synthetic drugs are created through new organic chemistry mechanisms that involve molecular biology and biochemistry. Medicinal chemistry focuses on drug development and discovery.

History of Medicinal ChemistryEdit

Medicinal chemistry is the application of chemical research techniques to the synthesis of pharmaceuticals. During the early stages of medicinal chemistry development, scientists were primarily concerned with the isolation of medicinal agents found in plants. Today, scientists in this field are also equally concerned with the creation of new synthetic drug compounds. Medicinal chemistry is almost always geared toward drug discovery and development.

Carrying Out Basic ResearchEdit

Medicinal chemistry research is an important area of research that is performed in many university labs. As an assistant professor at the University of Maryland School of Pharmacy, Alex Mackerell, Jr. has done research on cocaine and cocaine analogs to develop drugs for the treatment of cocaine addiction. His research, however, was not solely focused on just getting a product, but also on understanding basic chemical reactions and their properties. "We were interested in the physical properties and in the underlying mechanisms of cocaine," he says. The purpose of the research was to develop a cocaine antagonist that would cause ill effects when cocaine is ingested. This type of research characterizes the research being conducted in academic environments.

Drug discovery methodEdit

Medicinal chemists use hits to find molecules in which they want to synthesive and develop. Hits are generated from assays that contains the activity that the scientist wants to promote. They come from various places such as, investigation of molecules in pathology, from plants, fungi and other natural products. The way hits are created is from the structural interactions of the molecules with the receptors in the body and each hit that is created has different properties. Scientist use these properties to either mimic or inhibit such responses. After hits are generated, scientist then create many compounds. From these newly created compounds, scientists test the characteristics of the compounds to find out the potency and if it continues to provide what the scientist is looking for in terms of usefulness. After this is done, usually the scientist narrows down the hit and searches for an optimized molecule that they would like to continue to develop. This molecule is then given many studies and is implemented on a large scale to test, in-vitro, in-vivo and finally ran into clinical trials on animals and eventually on to humans. During these tests, scientist look for side-effects and effects on the animals before moving onto human clinical trials. Each process is arduous and roughly takes anywhere from 10-15 years on average.