Structural Biochemistry/Glycoproteins/Ebola Virus

The ebola virus operates via an envelope glycoprotein (GP) which is solely responsible for the virus’ ability to infect new cells. The virus’ genome consists of only seven genes; however, one of these genes is responsible for the generation of two proteins via transcriptional editing. The first protein, known as sGP, is primarily produced during the early stages of infection. Its purpose is structural and it does not come in contact with the surface of the cell. The second protein, GP, contains a hydrophobic tail, and thus is present on the surface of the envelope, making it responsible for the infection of new cells. To complicate things further, the immune response is mitigated by the presence of sGP. In fact, immune response demonstrates a preference for sGP over GP, allowing the virus to replicate more quickly. For this reason, the goal is to create an antibody that will target the GP while ignoring sGP.

X-ray crystallography of GP has allowed biochemists to understand its structure. GP contains 676 amino acids broken up into two subsections covalently connected by disulfide bonds. The first subsection is responsible for attachment to the host cell. The second subsection integrates the viral envelope into the host cell membrane. The most promising method for foiling the virus involves the creation of a specific monoclonal antibody that targets GP1 or GP2.