Structural Biochemistry/Genetics terms
Law of segregation- every individual possess a pair of alleles for any particular trait and that each parent passes a randomly selected copy (allele) of only one of these to its offspring.
Law of independent assortment- separate genes for separate traits are passed independently of one another form parents to offspring.
Chromosomal theory of inheritance- inheritance patterns may be generally explained by assuming that genes are located in specific sites on chromosomes.
Genome- 1 set of all chromosomes
Gene- all the DNA needed to make one protein or RNA
Dominant- allele that is fully expressed in phenotype when heterozygous
Recessive- hidden allele when heterozygous
Co-dominant- both alleles affect the phenotype in separate and distinguishable ways
Incomplete Dominance- phenotype in between two parents
Loci- position of a gene on a chromosome (locus=singular)
Allele- variations of a gene at a locus
Genotype- list of alleles (genes)
Phenotype- expression of alleles "traits"- what you observe
Heterozygous- alleles that are different
Homozygous- alleles that are the same
Telomere- ends of DNA
Epistasis- gene at one locus alters the phenotype of the gene at another locus; method to determine which gene comes first in a pathway.
3’ to 5’ phosphodiester bond- chemical linkage between adjacent nucleotides
Solenoid- circular ring of nucleosomes
Central Dogma- DNA to RNA to Proteins
Mutagens- physical or chemical agents that cause mutations
Types of mutations in substitutions- silent mutations, missense mutations, nonsense mutations
Insertions/Deletions- frameshift
More accurate replication- Nucleotide selection, DNA proofreading, Mismatch repair
Chromosome Shape- Metacentric, Acrocentric, Submetacentric, Telocentric
Robertsonian Translocation- Short arm of an acrocentric chromosome is exchanged with the long arm of another creating a large metacentric chromosome + a fragment that fails to segregate and is lost.
Character or Characteristic- An attribute or feature
Syndromes- Down (age of mother) chromosome 21, Patau chromosome 13, Edward chromosome 18, Turner XO, Triplo-X XXX or (XXXX: extra X chromosome can be inactivated, not necessarily active), Klinefelter XXY (or XXXY), Jacob XYY (gigantism)
Nondisjunction- failure of the chromosome pairs to separate properly usually during anaphase stage.
Crossing Over- exchange of genetic material between chromosomes
Synapsis- pairing of two homologous chromosome during meiosis
Parts of chromosome- telomere, centromere, kinetochore, spindle microtubules, tetrad, centrioles
Vector- DNA that self replicates and inserts/transfers DNA to host cells.
Parthenogenesis- The development of a person from an egg that was never fertilized.
Oncogenes- Genes that are associated with cell cycle and cell reproduction. A mutation in these can cause a cancerous tumor.
Multifactorial- The idea that multiple factors contribute to the end product such as genetic factors and environmental factors contributing to make one person.
Ligase- An enzymatic protein that participates in cell repair or gluing.
Probe- A single strand of DNA that is labelled radioactively or in other methods to be identified later.
Pedigree- An organized diagram of the hereditary passing of one gene. Follows the gene through generations to see how the gene is passed on.
Nonsense Mutation- A stop codon is coded for early in the sequence resulting in an unfinished protein. [1]
Reference
edit- ↑ genetic terms, November 20, 2012.
1.Reece, Jane (2011). Biology. Pearson. ISBN 978-0-321-55823-7. {{cite book}}
: Text "coauthors+ Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson" ignored (help)
Example of Structural Biochemistry in Genes. DNA is far from perfect. It generates mutations more frequently than we think of, but there are proteins that help correct these mutations so the cell isn't as affected by these mutations. one big complex of molecules that work together incorporate several different proteins, each with their own "job". The first protein is called BRCA1. When there is a mutation in a DNA strand, the strand breaks. When this happens, one of two things follow, a protein called 53BP1 comes in and chops the pieces of DNA in order to avoid making a bad copy. this unfortunately means that that chromosome is not working anymore and depending on how important that was for the life of the cell it could kill the cell. This can hopefully be avoided by having BRCA1 bind to that site making impossible for 53BP1 to come in and chop the piece of DNA. Once BRCA1 is in place a series of other small proteins attach to help correct the mutation. one of the protein is PalB2. The major job of this protein is to provide a binding site for two proteins that can interact together. one protein is RAD51. Every chromatid has a sister chromatid that is identical. RAD51 is essentially the scanner of the protein complex, looking for the sister chromatid and scanning it so the complex knows how to fix the mutation. finally BRCA2 is what actually fixes the mutation taking what RAD51 "scanned" and staying where the mutation with the help of the binding proteins PalB2 and BRCA1. This is how a lot of mutations are corrected to avoid problems that could pose very negative results to the cell and the organism as a whole.<ref name="Links between genome integrity and BRCA1 tumor suppression">[1],