Statistical Thermodynamics and Rate Theories/Data
Molecule | (K) | (K) |
---|---|---|
H2[1] | 87.547 | 6332.52 |
N2Invalid parameter in <ref> tag |
2.0518 | 3393.54 |
O2Invalid parameter in <ref> tag |
2.0793 | 2273.60 |
F2Invalid parameter in <ref> tag |
1.2808 | 1318.87 |
HFInvalid parameter in <ref> tag |
41.345 | 5954.27 |
HClInvalid parameter in <ref> tag |
15.240 | 4303.41 |
NOInvalid parameter in <ref> tag |
2.4524 | 2739.79 |
C2H2[2] | 1.7012 |
Example
editCalculate the ground state characteristic rotational ( ) and characteristic vibrational ( ) temperatures for molecular hydrogen, H2.
Where is the reduced Planck constant, is the internuclear distance for ground state hydrogen[1], is the Boltzmann constant, and is the reduced mass.
The characteristic vibrational temperature ( ) is calculated using the following equation
Where is Planck's constant, is the Boltzmann constant, and is the vibrational frequency of the molecule. To retain units of K the vibrational frequency must be changed to units of s-1.
References
edit- ↑ a b http://webbook.nist.gov/cgi/cbook.cgi?ID=1333-74-0
- ↑ E. Plyler, E. Tidwell, and T. Wiggins, (1963). Rotation-Vibration Constants of Acetylene. Journal of Optical Society America. Table 4, Data section in appendix