## Experimentation methodEdit

Above shown is a apparatus to measure the characteristics of a diode. This apparatus has got a regulated voltage supply V_{s}. A potentiometer POT is used to get a variable voltage supply from 0V to V_{s}. A Voltmeter is connected parallel to the diode to measure voltage drop across the diode, an Ammeter is connected in series with the diode to measure the current flowing via the diode.

The voltage must be varied from 0V to V_{s} and the corresponding Voltmeter and Ammeter readings must be noted in a tabular format

## Diode I-V Characteristic CurveEdit

where

*I*is the diode current,*I*_{S}is a scale factor called the*saturation current*,*V*_{D}is the voltage across the diode,*V*_{T}is the*thermal voltage*,- and
*n*is the*emission coefficient*, also known as the*ideality factor*.

The saturation current I_{S} is typically very small, so the diode current is often approximated as

The emission coefficient *n* varies from about 1 to 2 depending on the fabrication process and semiconductor material and in many cases is assumed to be approximately equal to 1 (thus omitted). The *thermal voltage* *V*_{T} is approximately 25.7 mV at room temperature (25 °C or 298 K) and is a known constant. It is defined by:

where

*q*is the magnitude of charge on an electron (the elementary charge),*k*is Boltzmann's constant,*T*is the absolute temperature of the p-n junction.