Acceleration of a Rigid Body
edit
The linear and angular accelerations are the time derivatives of the linear and angular velocity vectors at any instant:
a
v
˙
=
d
a
v
d
t
=
lim
Δ
t
→
0
a
v
(
t
+
Δ
t
)
−
a
v
(
t
)
Δ
t
{\displaystyle _{a}{\dot {v}}={\dfrac {d\,_{a}v}{dt}}=\lim _{\Delta t\rightarrow 0}{\dfrac {_{a}v(t+\Delta t)-\,_{a}v(t)}{\Delta t}}}
,
and:
a
ω
˙
=
d
a
ω
d
t
=
lim
Δ
t
→
0
a
ω
(
t
+
Δ
t
)
−
a
ω
(
t
)
Δ
t
{\displaystyle _{a}{\dot {\omega }}={\dfrac {d\,_{a}\omega }{dt}}=\lim _{\Delta t\rightarrow 0}{\dfrac {_{a}\omega (t+\Delta t)-\,_{a}\omega (t)}{\Delta t}}}
The linear velocity, as seen from a reference frame
{
a
}
{\displaystyle \{a\}}
, of a vector
q
{\displaystyle q}
, relative to frame
{
b
}
{\displaystyle \{b\}}
of which the origin coincides with
{
a
}
{\displaystyle \{a\}}
, is given by:
a
v
q
=
a
b
R
b
v
q
+
a
ω
b
×
a
b
R
b
q
{\displaystyle _{a}v_{q}=\,_{a}^{b}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q}
Differentiating the above expression gives the acceleration of the vector
q
{\displaystyle q}
:
a
v
˙
q
=
d
d
t
a
b
R
b
v
q
+
a
ω
˙
b
×
a
b
R
b
q
+
a
ω
b
×
d
d
t
a
b
R
b
q
{\displaystyle _{a}{\dot {v}}_{q}={\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times {\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}q}
The equation for the linear velocity may also be written as:
a
v
q
=
d
d
t
a
b
R
b
q
=
a
b
R
b
v
q
+
a
ω
b
×
a
b
R
b
q
{\displaystyle _{a}v_{q}={\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}q=\,_{a}^{b}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q}
Applying this result to the acceleration leads to:
a
v
˙
q
=
a
b
R
b
v
˙
q
+
a
ω
b
×
a
b
R
b
v
q
+
a
ω
˙
b
×
a
b
R
b
q
+
a
ω
b
×
(
a
b
R
b
v
q
+
a
ω
b
×
a
b
R
b
q
)
{\displaystyle _{a}{\dot {v}}_{q}=_{a}^{b}R\,_{b}{\dot {v}}_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(^{b}_{a}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)}
In the case the origins of
{
a
}
{\displaystyle \{a\}}
and
{
b
}
{\displaystyle \{b\}}
do not coincide, a term for the linear acceleration of
{
b
}
{\displaystyle \{b\}}
, with respect to
{
a
}
{\displaystyle \{a\}}
, is added:
a
v
˙
q
=
a
v
˙
b
,
o
r
g
+
a
b
R
b
v
˙
q
+
a
ω
b
×
a
b
R
b
v
q
+
a
ω
˙
b
×
a
b
R
b
q
+
a
ω
b
×
(
a
b
R
b
v
q
+
a
ω
b
×
a
b
R
b
q
)
{\displaystyle _{a}{\dot {v}}_{q}=\,_{a}{\dot {v}}_{b,org}+\,_{a}^{b}R\,_{b}{\dot {v}}_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}v_{q}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(^{b}_{a}R\,_{b}v_{q}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)}
For rotational joints,
b
q
{\displaystyle _{b}q}
is constant, and the above expression simplifies to:
a
v
˙
q
=
a
v
˙
b
,
o
r
g
+
a
ω
˙
b
×
a
b
R
b
q
+
a
ω
b
×
(
a
ω
b
×
a
b
R
b
q
)
{\displaystyle _{a}{\dot {v}}_{q}=\,_{a}{\dot {v}}_{b,org}+\,_{a}{\dot {\omega }}_{b}\times \,_{a}^{b}R\,_{b}q+\,_{a}\omega _{b}\times \left(_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}q\right)}
The angular velocity of a frame
{
c
}
{\displaystyle \{c\}}
, rotating relative to a frame
{
b
}
{\displaystyle \{b\}}
, which in itself is rotating relative to the reference frame
{
a
}
{\displaystyle \{a\}}
, with respect to
{
a
}
{\displaystyle \{a\}}
, is given by:
a
ω
c
=
a
ω
b
+
a
b
R
b
ω
c
{\displaystyle _{a}\omega _{c}=\,_{a}\omega _{b}+\,_{a}^{b}R\,_{b}\omega _{c}}
Differentiating leads to:
a
ω
˙
c
=
a
ω
˙
b
+
d
d
t
a
b
R
b
ω
c
{\displaystyle _{a}{\dot {\omega }}_{c}=\,_{a}{\dot {\omega }}_{b}+{\dfrac {d}{dt}}\,_{a}^{b}R\,_{b}\omega _{c}}
Replacing the last term with one of the expressions derived earlier:
a
ω
˙
c
=
a
ω
˙
b
+
a
ω
b
×
a
b
R
b
ω
c
{\displaystyle _{a}{\dot {\omega }}_{c}=\,_{a}{\dot {\omega }}_{b}+\,_{a}\omega _{b}\times \,_{a}^{b}R\,_{b}\omega _{c}}
The inertia tensor can be thought of as a generalization of the scalar moment of inertia:
a
I
=
(
I
x
x
−
I
x
y
−
I
x
z
I
x
y
I
y
y
−
I
y
z
I
x
z
−
I
y
z
I
z
z
)
{\displaystyle _{a}I={\begin{pmatrix}I_{xx}&-I_{xy}&-I_{xz}\\I_{xy}&I_{yy}&-I_{yz}\\I_{xz}&-I_{yz}&I_{zz}\\\end{pmatrix}}}
Newton's and Euler's equation
edit
The force
F
{\displaystyle F}
, acting at the center of mass of a rigid body with total mass
m
{\displaystyle m}
, causing an acceleration
v
˙
c
o
m
{\displaystyle {\dot {v}}_{com}}
, equals:
F
=
m
v
˙
c
o
m
{\displaystyle F=m{\dot {v}}_{com}}
In a similar way, the moment
N
{\displaystyle N}
, causing an angular acceleration
ω
˙
{\displaystyle {\dot {\omega }}}
, is given by:
N
=
c
I
ω
˙
+
ω
×
c
I
ω
{\displaystyle N=\,_{c}I{\dot {\omega }}+\omega \times \,_{c}I\omega }
,
where
c
I
{\displaystyle _{c}I}
is the inertia tensor, expressed in a frame
{
c
}
{\displaystyle \{c\}}
of which the origin coincides with the center of mass of the rigid body.